

The Art of Concurrency

Clay Breshears

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

The Art of Concurrency
by Clay Breshears

Copyright © 2009 Clay Breshears. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also

available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional

sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Sarah Schneider
Copyeditor: Amy Thomson
Proofreader: Sarah Schneider

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
May 2009: First Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. The Art of Concurrency, the

image of wheat-harvesting combines, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark

claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no

responsibility for errors or omissions, or for damages resulting from the use of the information contained

herein.

ISBN: 978-0-596-52153-0

[V]

1241201585

To my parents, for all their love, guidance,
and support.

C O N T E N T S

PREFACE vii

1 WANT TO GO FASTER? RAISE YOUR HANDS IF YOU WANT TO GO FASTER! 1
Some Questions You May Have 2
Four Steps of a Threading Methodology 7
Background of Parallel Algorithms 12
Shared-Memory Programming Versus Distributed-Memory Programming 15
This Book’s Approach to Concurrent Programming 19

2 CONCURRENT OR NOT CONCURRENT? 21
Design Models for Concurrent Algorithms 22
What’s Not Parallel 42

3 PROVING CORRECTNESS AND MEASURING PERFORMANCE 49
Verification of Parallel Algorithms 50
Example: The Critical Section Problem 53
Performance Metrics (How Am I Doing?) 66
Review of the Evolution for Supporting Parallelism in Hardware 71

4 EIGHT SIMPLE RULES FOR DESIGNING MULTITHREADED APPLICATIONS 73
Rule 1: Identify Truly Independent Computations 74
Rule 2: Implement Concurrency at the Highest Level Possible 74
Rule 3: Plan Early for Scalability to Take Advantage of Increasing Numbers of Cores 75
Rule 4: Make Use of Thread-Safe Libraries Wherever Possible 76
Rule 5: Use the Right Threading Model 77
Rule 6: Never Assume a Particular Order of Execution 77
Rule 7: Use Thread-Local Storage Whenever Possible or Associate Locks to Specific Data 78
Rule 8: Dare to Change the Algorithm for a Better Chance of Concurrency 79
Summary 80

5 THREADING LIBRARIES 81
Implicit Threading 82
Explicit Threading 88
What Else Is Out There? 92
Domain-Specific Libraries 92

6 PARALLEL SUM AND PREFIX SCAN 95
Parallel Sum 96
Prefix Scan 103
Selection 112
A Final Thought 123

v

7 MAPREDUCE 125
Map As a Concurrent Operation 127
Reduce As a Concurrent Operation 129
Applying MapReduce 138
MapReduce As Generic Concurrency 143

8 SORTING 145
Bubblesort 146
Odd-Even Transposition Sort 153
Shellsort 162
Quicksort 169
Radix Sort 182

9 SEARCHING 201
Unsorted Sequence 202
Binary Search 210

10 GRAPH ALGORITHMS 221
Depth-First Search 224
All-Pairs Shortest Path 240
Minimum Spanning Tree 245

11 THREADING TOOLS 257
Debuggers 258
Performance Tools 260
Anything Else Out There? 262
Go Forth and Conquer 263

GLOSSARY 265

PHOTO CREDITS 275

INDEX 277

v i C O N T E N T S

P R E F A C E

Why Should You Read This Book?
MULTICORE PROCESSORS MADE A BIG SPLASH WHEN THEY WERE FIRST INTRODUCED. Bowing to
the physics of heat and power, processor clock speeds could not keep doubling every 18 months
as they had been doing for the past three decades or more. In order to keep increasing the
processing power of the next generation over the current generation, processor manufacturers
began producing chips with multiple processor cores. More processors running at a reduced
speed generate less heat and consume less power than single-processor chips continuing on
the path of simply doubling clock speeds.

But how can we use those extra cores? We can run more than one application at a time, and
each program could have a separate processor core devoted to the execution. This would give
us truly parallel execution. However, there are only so many apps that we can run
simultaneously. If those apps aren’t very compute-intensive, we’re probably wasting compute
cycles, but now we’re doing it in more than one processor.

Another option is to write applications that will utilize the additional cores to execute portions
of the code that have a need to perform lots of calculations and whose computations are
independent of each other. Writing such programs is known as concurrent programming. With
any programming language or methodology, there are techniques, tricks, traps, and tools to
design and implement such programs. I’ve always found that there is more “art” than “science”
to programming. So, this book is going to give you the knowledge and one or two of the “secret
handshakes” you need to successfully practice the art of concurrent programming.

In the past, parallel and concurrent programming was the domain of a very small set of
programmers who were typically involved in scientific and technical computing arenas. From
now on, concurrent programming is going to be mainstream. Parallel programming will
eventually become synonymous with “programming.” Now is your time to get in on the
ground floor, or at least somewhere near the start of the concurrent programming evolution.

Who Is This Book For?
This book is for programmers everywhere.

I work for a computer technology company, but I’m the only computer science degree-holder
on my team. There is only one other person in the office within the sound of my voice who
would know what I was talking about if I said I wanted to parse an LR(1) grammar with a
deterministic pushdown automata. So, CS students and graduates aren’t likely to make up the
bulk of the interested readership for this text. For that reason, I’ve tried to keep the geeky CS
material to a minimum. I assume that readers have some basic knowledge of data structures
and algorithms and asymptotic efficiency of algorithms (Big-Oh notation) that is typically
taught in an undergraduate computer science curriculum. For whatever else I’ve covered, I’ve
tried to include enough of an explanation to get the idea across. If you’ve been coding for more
than a year, you should do just fine.

viii P R E F A C E

I’ve written all the codes using C. Meaning no disrespect, I figured this was the lowest common
denominator of programming languages that supports threads. Other languages, like Java and
C#, support threads, but if I wrote this book using one of those languages and you didn’t code
with the one I picked, you wouldn’t read my book. I think most programmers who will be able
to write concurrent programs will be able to at least “read” C code. Understanding the
concurrency methods illustrated is going to be more important than being able to write code
in one particular language. You can take these ideas back to C# or Java and implement them
there.

I’m going to assume that you have read a book on at least one threaded programming method.
There are many available, and I don’t want to cover the mechanics and detailed syntax of
multithreaded programming here (since it would take a whole other book or two). I’m not
going to focus on using one programming paradigm here, since, for the most part, the
functionality of these overlap. I will present a revolving usage of threading implementations
across the wide spectrum of algorithms that are featured in the latter portion of the book. If
there are circumstances where one method might differ significantly from the method used,
these differences will be noted.

I’ve included a review of the threaded programming methods that are utilized in this book to
refresh your memory or to be used as a reference for any methods you have not had the chance
to study. I’m not implying that you need to know all the different ways to program with
threads. Knowing one should be sufficient. However, if you change jobs or find that what you
know about programming with threads cannot easily solve a programming problem you have
been assigned, it’s always good to have some awareness of what else is available—this may
help you learn and apply a new method quickly.

What’s in This Book?
Chapter 1, Want to Go Faster? Raise Your Hands if You Want to Go Faster!, anticipates and
answers some of the questions you might have about concurrent programming. This chapter
explains the differences between parallel and concurrent, and describes the four-step threading
methodology. The chapter ends with a bit of background on concurrent programming and
some of the differences and similarities between distributed-memory and shared-memory
programming and execution models.

Chapter 2, Concurrent or Not Concurrent?, contains a lot of information about designing
concurrent solutions from serial algorithms. Two concurrent design models—task
decomposition and data decomposition—are each given a thorough elucidation. This chapter
gives examples of serial coding that you may not be able to make concurrent. In cases where
there is a way around this, I’ve given some hints and tricks to find ways to transform the serial
code into a more amenable form.

Chapter 3, Proving Correctness and Measuring Performance, first deals with ways to
demonstrate that your concurrent algorithms won’t encounter common threading errors and

P R E F A C E ix

to point out what problems you might see (so you can fix them). The second part of this chapter
gives you ways to judge how much faster your concurrent implementations are running
compared to the original serial execution. At the very end, since it didn’t seem to fit anywhere
else, is a brief retrospective of how hardware has progressed to support the current multicore
processors.

Chapter 4, Eight Simple Rules for Designing Multithreaded Applications, says it all in the title.
Use of these simple rules is pointed out at various points in the text.

Chapter 5, Threading Libraries, is a review of OpenMP, Intel Threading Building Blocks, POSIX
threads, and Windows Threads libraries. Some words on domain-specific libraries that have
been threaded are given at the end.

Chapter 6, Parallel Sum and Prefix Scan, details two concurrent algorithms. This chapter also
leads you through a concurrent version of a selection algorithm that uses both of the titular
algorithms as components.

Chapter 7, MapReduce, examines the MapReduce algorithmic framework; how to implement
a handcoded, fully concurrent reduction operation; and finishes with an application of the
MapReduce framework in a code to identify friendly numbers.

Chapter 8, Sorting, demonstrates some of the ins and outs of concurrent versions of Bubblesort,
odd-even transposition sort, Shellsort, Quicksort, and two variations of radix sort algorithms.

Chapter 9, Searching, covers concurrent designs of search algorithms to use when your data
is unsorted and when it is sorted.

Chapter 10, Graph Algorithms, looks at depth-first and breadth-first search algorithms. Also
included is a discussion of computing all-pairs shortest path and the minimum spanning tree
concurrently.

Chapter 11, Threading Tools, gives you an introduction to software tools that are available and
on the horizon to assist you in finding threading errors and performance bottlenecks in your
concurrent programs. As your concurrent code gets more complex, you will find these tools
invaluable in diagnosing problems in minutes instead of days or weeks.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types,
classes, namespaces, methods, modules, properties, parameters, values, objects, events,

x P R E F A C E

event handlers, XML tags, HTML tags, macros, the contents of files, or the output from
commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a
CD-ROM of examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “The Art of Concurrency by Clay Breshears. Copyright 2009
Clay Breshears, 978-0-596-52153-0.”

If you feel your use of code examples falls outside fair use or the permission given above, feel
free to contact us at permissions@oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596521530

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

P R E F A C E xi

For more information about our books, conferences, Resource Centers, and the O’Reilly
Network, see our website at:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at http://
my.safaribooksonline.com/.

Acknowledgments
I want to give my thanks to the following people for their influences on my career and support
in the writing of this book. Without all of them, you wouldn’t be reading this and I’d probably
be flipping burgers for a living.

To JOSEPH SARGENT and STANLEY CHASE for bringing Colossus: The Forbin Project to the big
screen in 1970. This movie was probably the biggest influence in my early years in getting me
interested in computer programming and instilling within me the curiosity to figure out what
cool and wondrous things computers could do.

To ROGER WINK for fanning the flame of my interest in computers, and for his 30-plus years
of friendship and technical knowledge. He taught me Bubblesort in COBOL and is always
working on something new and interesting that he can show off whenever we get the chance
to meet up.

To BILL MAGRO and TOM CORTESE for being my first manager at Intel and one of my first
teammates at the Intel Parallel Applications Center. Working at the PAC gave me the chance
to get my “hands dirty” with lots of different parallel codes, to interact with applications and
customers from many different technical and commercial areas, and to learn new methods and
new threading libraries. It was a “dream come true” job for me.

To JERRY BAUGH, BOB CHESEBROUGH, JEFF GALLAGHER, RAVI MANOHAR, MIKE PEARCE,
MICHAEL WRINN, and HUA (SELWYN) YOU for being fantastic colleagues at Intel, past and
present, and for reviewing chapters of my book for technical content. I’ve relied on every one
of these guys for their wide range of technical expertise; for their support, patience, and
willingness to help me with my projects and goals; for their informed opinions; and for their
continuing camaraderie throughout my years at Intel.

xii P R E F A C E

To my editor, MIKE LOUKIDES, and the rest of the staff at O’Reilly who had a finger in this
project. I couldn’t have done anything like this without their help and advice and nagging me
about my deadlines.

To GERGANA SLAVOVA, who posed as my “target audience” and reviewed the book from cover
to cover. Besides keeping me honest to my readers by making me explain complex ideas in
simple terms and adding examples when I’d put too many details in a single paragraph, she
peppered her comments with humorous asides that broke up the monotony of the tedium of
the revision process (and she throws a slammin’ tea party, too).

To HENRY GABB for his knowledge of parallel and multithreaded programming, for convincing
me to apply for a PAC job and join him at Intel back in 2000, and for his devotion to SEC
football and the Chicago Cubs. During the almost 15 years we’ve known each other, we’ve
worked together on many different projects and we’ve each been able to consult with the other
on technical questions. His knowledge and proficiency as a technical reviewer of this text, and
many other papers of mine he has so kindly agreed to review over the years, have improved
my written communication skills by an order of magnitude.

And finally, a big heartfelt “thank you” to my patient and loving wife, LORNA, who now has
her husband back.

P R E F A C E xiii

C H A P T E R O N E

Want to Go Faster? Raise Your Hands
if You Want to Go Faster!

“[A]nd in this precious phial is the power to think twice

as fast, move twice as quickly, do twice as much work in

a given time as you could otherwise do.”

—H. G. Wells, “The New Accelerator” (1901)

WITH THIS BOOK I WANT TO PEEL BACK THE VEILS OF MYSTERY , MISERY, AND misunderstanding
that surround concurrent programming. I want to pass along to you some of the tricks, secrets,
and skills that I’ve learned over my last two decades of concurrent and parallel programming
experience.

I will demonstrate these tricks, secrets, and skills—and the art of concurrent programming—
by developing and implementing concurrent algorithms from serial code. I will explain the
thought processes I went through for each example in order to give you insight into how
concurrent code can be developed. I will be using threads as the model of concurrency in a
shared-memory environment for all algorithms devised and implemented. Since this isn’t a
book on one specific threading library, I’ve used several of the common libraries throughout
and included some hints on how implementations might differ, in case your preferred method
wasn’t used.

Like any programming skill, there is a level of mechanics involved in being ready and able to
attempt concurrent or multithreaded programming. You can learn these things (such as syntax,
methods for mutual exclusion, and sharing data) through study and practice. There is also a
necessary component of logical thinking skills and intuition needed to tackle or avoid even
simple concurrent programming problems successfully. Being able to apply that logical
thinking and having some intuition, or being able to think about threads executing in parallel
with each other, is the art of concurrent and multithreaded programming. You can learn some
of this through demonstration by experts, but that only works if the innate ability is already
there and you can apply the lessons learned to other situations. Since you’ve picked up this
volume, I’m sure that you, my fine reader, already possess such innate skills. This book will
help you shape and aim those skills at concurrent and multithreaded programming.

Some Questions You May Have
Before we get started, there are some questions you may have thought up while reading those
first few paragraphs or even when you saw this book on the shelves before picking it up. Let’s
take a look at some of those questions now.

What Is a Thread Monkey?

A thread monkey is a programmer capable of designing multithreaded, concurrent, and parallel
software, as well as grinding out correct and efficient code to implement those designs. Much
like a “grease monkey” is someone who can work magic on automobiles, a thread monkey is

2 C H A P T E R 1 :   W A N T T O G O F A S T E R ? R A I S E Y O U R H A N D S I F Y O U W A N T T O G O F A S T E R !

a wiz at concurrent programming. Thread monkey is a title of prestige, unlike the often
derogatory connotations associated with “code monkey.”

Parallelism and Concurrency: What’s the Difference?

The terms “parallel” and “concurrent” have been tossed around with increasing frequency
since the release of general-purpose multicore processors. Even prior to that, there has been
some confusion about these terms in other areas of computation. What is the difference, or
is there a difference, since use of these terms seems to be almost interchangeable?

A system is said to be concurrent if it can support two or more actions in progress at the same
time. A system is said to be parallel if it can support two or more actions executing
simultaneously. The key concept and difference between these definitions is the phrase “in
progress.”

A concurrent application will have two or more threads in progress at some time. This can
mean that the application has two threads that are being swapped in and out by the operating
system on a single core processor. These threads will be “in progress”—each in the midst of its
execution—at the same time. In parallel execution, there must be multiple cores available
within the computation platform. In that case, the two or more threads could each be assigned
a separate core and would be running simultaneously.

I hope you’ve already deduced that “parallel” is a subset of “concurrent.” That is, you can write
a concurrent application that uses multiple threads or processes, but if you don’t have multiple
cores for execution, you won’t be able to run your code in parallel. Thus, concurrent
programming and concurrency encompass all programming and execution activities that
involve multiple streams of execution being implemented in order to solve a single problem.

For about the last 20 years, the term parallel programming has been synonymous with
message-passing or distributed-memory programming. With multiple compute nodes in a
cluster or connected via some network, each node with one or more processors, you had a
parallel platform. There is a specific programming methodology required to write applications
that divide up the work and share data. The programming of applications utilizing threads has
been thought of as concurrent programming, since threads are part of a shared-memory
programming model that fits nicely into a single core system able to access the memory within
the platform.

I will be striving to use the terms “parallel” and “concurrent” correctly throughout this book.
This means that concurrent programming and design of concurrent algorithms will assume
that the resulting code is able to run on a single core or multiple cores without any drastic
changes. Even though the implementation model will be threads, I will talk about the parallel
execution of concurrent codes, since I assume that we all have multicore processors available
on which to execute those multiple threads. Also, I’ll use the term “parallelization” as the
process of translating applications from serial to concurrent (and the term “concurrentization”
doesn’t roll off the tongue quite as nicely).

S o m e Q u e s t i o n s Y o u M a y H a v e 3

Why Do I Need to Know This? What’s in It for Me?

I’m tempted to be a tad flippant and tell you that there’s no way to avoid this topic; multicore
processors are here now and here to stay, and if you want to remain a vital and employable
programmer, you have no choice but to learn and master this material. Of course, I’d be waving
my hands around manically for emphasis and trying to put you into a frightened state of mind.
While all that is true to some degree, a kinder and gentler approach is more likely to gain your
trust and get you on board with the concurrent programming revolution.

Whether you’re a faceless corporate drone for a large software conglomerate, writing code for
a small in-house programming shop, doing open source development, or just dabbling with
writing software as a hobby, you are going to be touched by multicore processors to one degree
or another. In the past, to get a burst of increased performance out of your applications, you
simply needed to wait for the next generation of processor that had a faster clock speed than
the previous model. A colleague of mine once postulated that you could take nine months off
to play the drums or surf, come back after the new chips had been released, run some
benchmarks, and declare success. In his seminal (and by now, legendary) article, “The Free
Lunch Is Over: A Fundamental Turn Toward Concurrency in Software” (Dr. Dobb’s Journal,
March 2005), Herb Sutter explains that this situation is no longer viable. Programmers will
need to start writing concurrent code in order to take full advantage of multicore processors
and achieve future performance improvements.

What kinds of performance improvements can you expect with concurrent programming on
multicore processors? As an upper bound, you could expect applications to run in half the time
using two cores, one quarter of the time running on four cores, one eighth of the time running
on eight cores, and so on. This sounds much better than the 20–30% decrease in runtime when
using a new, faster processor. Unfortunately, it takes some work to get code whipped into shape
and capable of taking advantage of multiple cores. Plus, in general, very few codes will be able
to achieve these upper bound levels of increased performance. In fact, as the number of cores
increases, you may find that the relative performance actually decreases. However, if you can
write good concurrent and multithreaded applications, you will be able to achieve respectable
performance increases (or be able to explain why you can’t). Better yet, if you can develop
your concurrent algorithms in such a way that the same relative performance increases seen
on two and four cores remains when executing on 8, 16, or more cores, you may be able to
devote some time to your drumming and surfing. A major focus of this book will be pointing
out when and how to develop such scalable algorithms.

Isn’t Concurrent Programming Hard?

Concurrent programming is no walk in the park, that’s for sure. However, I don’t think it is as
scary or as difficult as others may have led you to think. If approached in a logical and informed
fashion, learning and practicing concurrent programming is no more difficult than learning
another programming language.

4 C H A P T E R 1 :   W A N T T O G O F A S T E R ? R A I S E Y O U R H A N D S I F Y O U W A N T T O G O F A S T E R !

With a serial program, execution of your code takes a predictable path through the application.
Logic errors and other bugs can be tracked down in a methodical and logical way. As you gain
more experience and more sophistication in your programming, you learn of other potential
problems (e.g., memory leaks, buffer overflows, file I/O errors, floating-point precision, and
roundoff), as well as how to identify, track down, and correct such problems. There are
software tools that can assist in quickly locating code that is either not performing as intended
or causing problems. Understanding the causes of possible bugs, experience, and the use of
software tools will greatly enhance your success in diagnosing problems and addressing them.

Concurrent algorithms and multithreaded programming require you to think about multiple
execution streams running at the same time and how you coordinate all those streams in order
to complete a given computation. In addition, an entirely new set of errors and performance
problems that have no equivalent in serial programming will rear their ugly heads. These new
problems are the direct result of the nondeterministic and asynchronous behavior exhibited
by threads executing concurrently. Because of these two characteristics, when you have a bug
in your threaded program, it may or may not manifest itself. The execution order (or
interleaving) of multiple threads may be just perfect so that errors do not occur, but if you
make some change in the execution platform that alters your correct interleaving of threads,
the errors may start popping up. Even if no hardware change is made, consecutive runs of the
same application with the same inputs can yield two different results for no more reason than
the fact that it is Tuesday.

To visualize the problem you face, think of all the different ways you can interlace the fingers
between two hands. This is like running two threads, where the fingers of a hand are the
instructions executed by a thread, concurrently or in parallel. There are 70 different ways to
interleave two sets of four fingers. If only 4% (3 of 70) of those interleavings caused an error,
how could you track down the cause, especially if, like the Heisenberg Uncertainty Principle,
any attempts to identify the error through standard debugging techniques would guarantee
one of the error-free interleavings always executed? Luckily, there are software tools
specifically designed to track down and identify correctness and performance issues within
threaded code.

With the proper knowledge and experience, you will be better equipped to write code that is
free of common threading errors. Through the pages of this book, I want to pass on that kind
of knowledge. Getting the experience will be up to you.

Aren’t Threads Dangerous?

Yes and no. In the years since multicore processors became mainstream, a lot of learned folks
have come out with criticisms of the threading model. These people focus on the dangers
inherent in using shared memory to communicate between threads and how nonscalable the
standard synchronization objects are when pushed beyond a few threads. I won’t lie to you;
these criticisms do have merit.

S o m e Q u e s t i o n s Y o u M a y H a v e 5

So, why should I write a book about concurrency using threads as the model of implementation
if they are so fraught with peril and hazard? Every programming language has its own share
of risk, but once you know about these potential problems, you are nine tenths of the way to
being able to avoid them. Even if you inadvertently incorporate a threading error in your code,
knowing what to look for can be much more helpful than even the best debugger. For example,
in FORTRAN 77, there was a default type assigned to variables that were undeclared, based on
the first letter of the variable name. If you mistyped a variable name, the compiler blithely
accepted this and created a new variable. Knowing that you might have put in the number ’1’
for the letter ‘I’ or the letter ‘O’ for the number ’0,’ you stood a better chance of locating the
typing error in your program.

You might be wondering if there are other, “better” concurrency implementations available or
being developed, and if so, why spend time on a book about threading. In the many years that
I’ve been doing parallel and concurrent programming, all manner of other parallel
programming languages have come and gone. Today, most of them are gone. I’m pretty sure
my publisher didn’t want me to write a book on any of those, since there is no guarantee that
the information won’t all be obsolete in six months. I am also certain that as I write this,
academics are formulating all sorts of better, less error-prone, more programmer-friendly
methods of concurrent programming. Many of these will be better than threads and some of
them might actually be adopted into mainstream programming languages. Some might even
spawn accepted new concurrent programming languages.

However, in the grand scheme of things, threads are here now and will be around for the
foreseeable future. The alternatives, if they ever arrive and are able to overcome the inertia of
current languages and practices, will be several years down the road. Multicore processors are
here right now and you need to be familiar with concurrent programming right now. If you
start now, you will be better prepared and practiced with the fundamentals of concurrent
applications by the time anything new comes along (which is a better option than lounging
around for a couple years, sitting on your hands and waiting for me to put out a new edition
of this book using whatever new concurrency method is developed to replace threads).

THE TWO-MINUTE PRIMER ON CONCURRENT PROGRAMMING
Concurrent programming is all about independent computations that the machine can execute in
any order. Iterations of loops and function calls within the code that can be executed autonomously
are two instances of computations that can be independent. Whatever concurrent work you can pull
out of the serial code can be assigned to threads (or cooperating processes) and run on any one of
the multiple cores that are available (or run on a single processor by swapping the computations in
and out of the processor to give the illusion of parallel execution). Not everything within an
application will be independent, so you will still need to deal with serial execution amongst the
concurrency.

6 C H A P T E R 1 :   W A N T T O G O F A S T E R ? R A I S E Y O U R H A N D S I F Y O U W A N T T O G O F A S T E R !

To create the situation where concurrent work can be assigned to threads, you will need to add calls
to library routines that implement threading. These additional function calls add to the overhead of
the concurrent execution, since they were not in the original serial code. Any additional code that
is needed to control and coordinate threads, especially calls to threading library functions, is
overhead. Code that you add for threads to determine if the computation should continue or to get
more work or to signal other threads when desired conditions have been met is all considered
overhead, too. Some of that code may be devoted to ensuring that there are equal amounts of work
assigned to each thread. This balancing of the workload between threads will make sure threads
aren’t sitting idle and wasting system resources, which is considered another form of overhead.
Overhead is something that concurrent code must keep to a minimum as much as possible. In order
to attain the maximum performance gains and keep your concurrent code as scalable as possible,
the amount of work that is assigned to a thread must be large enough to minimize or mask the
detrimental effects of overhead.

Since threads will be working together in shared memory, there may be times when two or more
threads need to access the same memory location. If one or more of these threads is looking to update
that memory location, you will have a storage conflict or data race. The operating system schedules
threads for execution. Because the scheduling algorithm relies on many factors about the current
status of the system, that scheduling appears to be asynchronous. Data races may or may not show
up, depending on the order of thread executions. If the correct execution of your concurrent code
depends on a particular order of memory updates (so that other threads will be sure to get the proper
saved value), it is the responsibility of the program to ensure this order is guaranteed. For example,
in an airline reservation system, if two travel agents see the same empty seat on a flight, they could
both put the name of a client into that seat and generate a ticket. When the passengers show up at
the airport, who will get the seat? To avoid fisticuffs and to enforce the correct ratio of butts to seats,
there must be some means of controlling the updates of shared resources.

There are several different methods of synchronizing threads to ensure mutually exclusive access
to shared memory. While synchronization is a necessary evil, use of synchronization objects is
considered overhead (just like thread creation and other coordination functions) and their use
should be reserved for situations that cannot be resolved in any other way.

The goal of all of this, of course, is to improve the performance of your application by reducing the
amount of time it takes to execute, or to be able to process more data within a fixed amount of time.
You will need an awareness of the perils and pitfalls of concurrent programming and how to avoid
or correct them in order to create a correctly executing application with satisfactory performance.

Four Steps of a Threading Methodology
When developing software, especially large commercial applications, a formal process is used
to ensure that everything is done to meet the goals of the proposed software in a timely and

F o u r S t e p s o f a T h r e a d i n g M e t h o d o l o g y 7

efficient way. This process is sometimes called the software lifecycle, and it includes the
following six steps:

Specification
Talk to users of the software to find out what functionality is desired, what the input and
output specifications are, and, based on the feedback, formally specify the functionality to
be included, a general structure of the application, and the code to implement it.

Design
Set down more detailed plans of the application and the functional components of the
application.

Implement
Write the code for the application.

Test
Assure that all the parts of the application work as expected, both separately and within
the structure of the entire application, and fix any problems.

Tune
Make improvements to the code in order to get better performance on target platforms.

Maintenance
Fix bugs and continue performance improvements, and add new features not in the
original design.

The “implement,” “test,” and “tune” steps may not have hard and fast demarcations between
each of them, as programmers will be continually writing, testing, correcting, and tuning code
they are working on. There is a cycle of activity around these steps, even when separate QA
engineers do the testing. In fact, the cycle may need to go all the way back to the design step
if some features cannot be implemented or if some interaction of features, as originally
specified, have unforeseen and catastrophic consequences.

The creation of concurrent programs from serial applications also has a similar lifecycle. One
example of this is the Threading Methodology developed by Intel application engineers as they
worked on multithreaded and parallel applications. The threading methodology has four steps
that mirror the steps within the software lifecycle:

Analysis
Similar to “specification” in the software lifecycle, this step will identify the functionality
(code) within the application that contains computations that can run independently.

Design and implementation
This step should be self-explanatory.

Test for correctness
Identify any errors within the code due to incorrect or incomplete implementation of the
threading. If the code modifications required for threading have incorrectly altered the
serial logic, there is a chance that new logic errors will be introduced.

8 C H A P T E R 1 :   W A N T T O G O F A S T E R ? R A I S E Y O U R H A N D S I F Y O U W A N T T O G O F A S T E R !

Tune for performance
Once you have achieved a correct threaded solution, attempt to improve the execution
time.

A maintenance step is not part of the threading methodology. I assume that once you have an
application written, serial or concurrent, that application will be maintained as part of the
normal course of business. The four steps of the threading methodology are considered in more
detail in the following sections.

Step 1. Analysis: Identify Possible Concurrency

Since the code is already designed and written, the functionality of the application is known.
You should also know which outputs are generated for given inputs. Now you need to find
the parts of the code that can be threaded; that is, those parts of the application that contain
independent computations.

If you know the application well, you should be able to home in on these parts of the code
rather quickly. If you are less familiar with all aspects of the application, you can use a profile
of the execution to identify hotspots that might yield independent computations. A hotspot is
any portion of the code that has a significant amount of activity. With a profiler, time spent in
the computation is going to be the most obvious measurable activity. Once you have found
points in the program that take the most execution time, you can begin to investigate these
for concurrent execution.

Just because an application spends a majority of the execution time in a segment of code, that
does not mean that the code is a candidate for concurrency. You must perform some
algorithmic analysis to determine if there is sufficient independence in the code segment to
justify concurrency. Still, searching through those parts of the application that take the most
time will give you the chance to achieve the most “bang for the buck” (i.e., be the most
beneficial to the overall outcome). It will be much better for you (and your career) to spend a
month writing, testing, and tuning a concurrent solution that reduces the execution time of
some code segment that accounts for 75% of the serial execution time than it would be to take
the same number of hours to slave over a segment that may only account for 2%.

Step 2. Design and Implementation: Threading the Algorithm

Once you have identified independent computations, you need to design and implement a
concurrent version of the serial code. This step is what this book is all about. I won’t spend any
more time here on this topic, since the details and methods will unfold as you go through the
pages ahead.

F o u r S t e p s o f a T h r e a d i n g M e t h o d o l o g y 9

Step 3. Test for Correctness: Detecting and Fixing Threading Errors

Whenever you make code changes to an application, you open the door to the possibility of
introducing bugs. Adding code to a serial application in order to generate and control multiple
threads is no exception. As I alluded to before, the execution of threaded applications may or
may not reveal any problems during testing. You might be able to run the application correctly
hundreds of times, but when you try it out on another system, errors might show up on the
new system or they might not. Even if you can get a run that demonstrates an error, running
the code through a debugger (even one that is thread-aware) may not pinpoint the problem,
since the stepwise execution may mask the error when you are actively looking for it. Using a
print statement—that most-used of all debugging tools—to track values assigned to variables
can modify the timing of thread interleavings, and that can also hide the error.

The more common threading errors, such as data races and deadlock, may be avoided
completely if you know about the causes of these errors and plan well enough in the Design
and Implementation step to avoid them. However, with the use of pointers and other such
indirect references within programming languages, these problems can be virtually impossible
to foresee. In fact, you may have cases in which the input data will determine if an error might
manifest itself. Luckily, there are tools that can assist in tracking down threading errors. I’ve
listed some of these in Chapter 11.

Even after you have removed all of the known threading bugs introduced by your
modifications, the code may still not give the same answers as the serial version. If the answers
are just slightly off, you may be experiencing round-off error, since the order of combining
results generated by separate threads may not match the combination order of values that were
generated in the serial code.

More egregious errors are likely due to the introduction of some logic error when threading.
Perhaps you have a loop where some iteration is executed multiple times or where some loop
iterations are not executed at all. You won’t be able to find these kinds of errors with any tool
that looks for threading errors, but you may be able to home in on the problem with the use
of some sort of debugging tool. One of the minor themes of this book is the typical logic errors
that can be introduced around threaded code and how to avoid these errors in the first place.
With a good solid design, you should be able to keep the number of threading or logic errors
to a minimum, so not much verbiage is spent on finding or correcting errors in code.

Step 4. Tune for Performance: Removing Performance Bottlenecks

After making sure that you have removed all the threading (and new logic) errors from your
code, the final step is to make sure the code is running at its best level of performance. Before
threading a serial application, be sure you start with a tuned code. Making serial tuning
modifications to threaded code may change the whole dynamic of the threaded portions such
that the additional threading material can actually degrade performance. If you have started

10 C H A P T E R 1 :   W A N T T O G O F A S T E R ? R A I S E Y O U R H A N D S I F Y O U W A N T T O G O F A S T E R !

with serial code that is already tuned, you can focus your search for performance problems on
only those parts that have been threaded.

Tuning threaded code typically comes down to identifying situations like contention on
synchronization objects, imbalance between the amount of computation assigned to each
thread, and excessive overhead due to threading API calls or not enough work available to
justify the use of threads. As with threading errors, there are software tools available to assist
you in diagnosing and tracking down these and other performance issues.

You must also be aware that the actual threading of the code may be the culprit to a
performance bottleneck. By breaking up the serial computations in order to assign them to
threads, your carefully tuned serial execution may not be as tuned as it was before. You may
introduce performance bugs like false sharing, inefficient memory access patterns, or bus
overload. Identification of these types of errors will require whatever technology can find these
types of serial performance errors. The avoidance of both threading and serial performance
problems (introduced due to threading) is another minor theme of this book. With a good solid
design, you should be able to achieve very good parallel performance, so not much verbiage
is spent on finding or tuning performance problems in code.

The testing and tuning cycle

When you modify your code to correct an identified performance bug, you may inadvertently
add a threading error. This can be especially true if you need to revise the use of
synchronization objects. Once you’ve made changes for performance tuning, you should go
back to the Test for Correctness step and ensure that your changes to fix the performance bugs
have not introduced any new threading or logic errors. If you find any problems and modify
code to repair them, be sure to again examine the code for any new performance problems
that may have been inserted when fixing your correctness issues.

Sometimes it may be worse than that. If you are unable to achieve the expected performance
speed from your application, you may need to return to the Design and Implementation step
and start all over. Obviously, if you have multiple sites within your application that have been
made concurrent, you may need to start at the design step for each code segment once you
have finished with the previous code segment. If some threaded code sections can be shown
to improve performance, these might be left as is, unless modifications to algorithms or global
data structures will affect those previously threaded segments. It can all be a vicious circle and
can make you dizzy if you think about it too hard.

What About Concurrency from Scratch?

Up to this point (and for the rest of the book, too), I’ve been assuming that you are starting
with a correctly executing serial code to be transformed into a concurrent equivalent. Can you
design a concurrent solution without an intermediate step of implementing a serial code? Yes,
but I can’t recommend it. The biggest reason is that debugging freshly written parallel code has

F o u r S t e p s o f a T h r e a d i n g M e t h o d o l o g y 11

two potential sources of problems: logic errors in the algorithm or implementation, and
threading problems in the code. Is that bug you’ve found caused by a data race or because the
code is not incrementing through a loop enough times?

In the future, once there has been more study of the problem, and as a result, more theory,
models, and methods, plus a native concurrent language or two, you will likely be able to write
concurrent code from scratch. For now, I recommend that you get a correctly working serial
code and then examine how to make it run in parallel. It’s probably a good idea to note
potential concurrency when designing new software, but write and debug in serial first.

Background of Parallel Algorithms
If you’re unfamiliar with parallel algorithms or parallel programming, this section is for you—
it serves as a brief guide to some of what has gone before to reach the current state of concurrent
programming on multicore processors.

Theoretical Models

All my academic degrees are in computer science. During my academic career, I’ve had to learn
about and use many different models of computation. One of the basic processor architecture
models used in computer science for studying algorithms is the Random Access Machine
(RAM) model. This is a simplified model based on the von Neumann architecture model. It
has all the right pieces: CPU, input device(s), output device(s), and randomly accessible
memory. See Figure 1-1 for a pictorial view of the components of the RAM and how data flows
between components.

CPU

Memory OutputInput

FIGURE 1-1. RAM configuration with data flow indicated by arrows

You can add hierarchies to the memory in order to describe levels of cache, you can attach a
random access disk as a single device with both input and output, you can control the
complexity and architecture of the CPU, or you can make dozens of other changes and
modifications to create a model as close to reality as you desire. Whatever bits and pieces and
doodads you think to add, the basics of the model remain the same and are useful in designing
serial algorithms.

12 C H A P T E R 1 :   W A N T T O G O F A S T E R ? R A I S E Y O U R H A N D S I F Y O U W A N T T O G O F A S T E R !

For designing parallel algorithms, a variation of the RAM model called the Parallel Random
Access Machine (PRAM, pronounced “pee-ram”) has been used. At its simplest, the PRAM is
multiple CPUs attached to the unlimited memory, which is shared among all the CPUs. The
threads that are executing on the CPUs are assumed to be executing in lockstep fashion (i.e.,
all execute one instruction at the same time before executing the next instruction all at the
same time, and so on) and are assumed to have the same access time to memory locations
regardless of the number of processors. Details of the connection mechanism between CPUs
(processors) and memory are usually ignored, unless there is some specific configuration that
may affect algorithm design. The PRAM shown in Figure 1-2 uses a (nonconflicting) shared
bus connecting memory and the processors.

Shared bus

CPU CPU CPU CPU

Memory OutputInput

FIGURE 1-2. PRAM configuration with shared bus between CPUs and memory

As with the RAM, variations on the basic PRAM model can be made to simulate real-world
processor features if those features will affect algorithm design. The one feature that will always
affect algorithm design on a PRAM is the shared memory. The model makes no assumptions
about software or hardware support of synchronization objects available to a programmer.
Thus, the PRAM model stipulates how threads executing on individual processors will be able
to access memory for both reading and writing. There are two types of reading restrictions and
the same two types of writing restrictions: either concurrent or exclusive. When specifying a
PRAM algorithm, you must first define the type of memory access PRAM your algorithm has
been designed for. The four types of PRAM are listed in Table 1-1.

TABLE 1-1. PRAM variations based on memory access patterns

Memory access parameters Description

Concurrent Read,

Concurrent Write (CRCW)

Multiple threads may read from the same memory location at the same time and multiple

threads may write to the same memory location at the same time.

B a c k g r o u n d o f P a r a l l e l A l g o r i t h m s 13

Memory access parameters Description

Concurrent Read, Exclusive

Write (CREW)

Multiple threads may read from the same memory location at the same time and one

thread may write to a given memory location at any time.

Exclusive Read, Concurrent

Write (ERCW)

One thread may read from a given memory location at any time and multiple threads may

write to the same memory location at the same time.

Exclusive Read, Exclusive

Write (EREW)

One thread may read from a given memory location at any time and one thread may write

to a given memory location at any time.

On top of these restrictions, it is up to the PRAM algorithm to enforce the exclusive read and
exclusive write behavior of the chosen model. In the case of a concurrent write model, the
model further specifies what happens when two threads attempt to store values into the same
memory location at the same time. Popular variations of this type of PRAM are to have the
algorithm ensure that the value being written will be the same value, to simply select a random
value from the two or more processors attempting to write, or to store the sum (or some other
combining operation) of the multiple values. Since all processors are executing in lockstep
fashion, writes to memory are all executed simultaneously, which makes it easy to enforce the
designated policy.

Not only must you specify the memory access behavior of the PRAM and design your algorithm
to conform to that model, you must also denote the number of processors that your algorithm
will use. Since this is a theoretical model, an unlimited number of processors are available. The
number is typically based on the size of the input. For example, if you are designing an
algorithm to work on N input items, you can specify that the PRAM must have N2 processors
and threads, all with access to the shared memory.

With an inexhaustible supply of processors and infinite memory, the PRAM is obviously a
theoretical model for parallel algorithm design. Implementing PRAM algorithms on finite
resourced platforms may simply be a matter of simulating the computations of N “logical”
processors on the cores available to us. When we get to the algorithm design and
implementation chapters, some of the designs will take a PRAM algorithm as the basic starting
point, and I’ll show you how you might convert it to execute correctly on a multicore processor.

Distributed-Memory Programming

Due to shared bus contention issues, shared-memory parallel computers hit an upper limit of
approximately 32 processors in the late ’80s and early ’90s. Distributed-memory configurations
came on strong in order to scale the number of processors higher. Parallel algorithms require
some sharing of data at some point. However, since each node in a distributed-memory
machine is separated from all the other nodes, with no direct sharing mechanism, developers
used libraries of functions to pass messages between nodes.

14 C H A P T E R 1 :   W A N T T O G O F A S T E R ? R A I S E Y O U R H A N D S I F Y O U W A N T T O G O F A S T E R !

As an example of programming on a distributed-memory machine, consider the case where
Process 1 (P1) requires a vector of values from Process 0 (P0). The program running as P0 must
include logic to package the vector into a buffer and call the function that will send the contents
of that buffer from the memory of the node on which P0 is running across the network
connection between the nodes and deposit the buffer contents into the memory of the node
running P1. On the P1 side, the program must call the function that receives the data deposited
into the node’s memory and copy it into a designated buffer in the memory accessible to P1.

At first, each manufacturer of a distributed-memory machine had its own library and set of
functions that could do simple point-to-point communication as well as collective
communication patterns like broadcasting. Over time, some portable libraries were developed,
such as PVM (Parallel Virtual Machine) and MPI (Message-Passing Interface). PVM was able
to harness networks of workstations into a virtual parallel machine that cost much less than a
specialized parallel platform. MPI was developed as a standard library of defined message-
passing functionality supported on both parallel machines and networks of workstations. The
Beowulf Project showed how to create clusters of PCs using Linux and MPI into an even more
affordable distributed-memory parallel platform.

Parallel Algorithms Literature

Many books have been written about parallel algorithms. A vast majority of these have focused
on message-passing as the method of parallelization. Some of the earlier texts detail algorithms
where the network configuration (e.g., mesh or hypercube) is an integral part of the algorithm
design; later texts tend not to focus so much on developing algorithms for specific network
configurations, but rather, think of the execution platform as a cluster of processor nodes. In
the algorithms section of this book (Chapters 6 through 10), some of the designs will take a
distributed-memory algorithm as the basic starting point, and I’ll show you how you might
convert it to execute correctly in a multithreaded implementation on a multicore processor.

Shared-Memory Programming Versus Distributed-Memory
Programming
Some of you may be coming from a distributed-memory programming background and want
to get into threaded programming for multicore processors. For you, I’ve put together a list
that compares and contrasts shared-memory programming with distributed-memory
programming. If you don’t know anything about distributed-memory programming, this will
give you some insight into the differences between the two programming methods. Even if
you’ve only ever done serial programming to this point, the following details are still going to
give you an introduction to some of the features of concurrent programming on shared-
memory that you never encounter using a single execution thread.

S h a r e d - M e m o r y P r o g r a m m i n g V e r s u s D i s t r i b u t e d - M e m o r y P r o g r a m m i n g 15

Common Features

The following features are common to shared-memory parallelism and distributed-memory
parallelism.

Redundant work

No matter how concurrent an algorithm is, there are still parts that will have to be carried out
serially. When the results of those serial computations must be shared, you can perform the
computation in one process and broadcast the results out to the other processes that require
the data. Sending this information will add overhead to the execution time. On the other hand,
if the data used in the computation is already available to other processes, you can have each
process perform the computation and generate results locally without the need to send any
messages. In shared-memory parallelism, the data for computation is likely already available
by default. Even though doing redundant work in threads keeps processing resources busy and
eliminates extraneous synchronization, there is a cost in memory space needed to hold multiple
copies of the same value.

Dividing work

Work must be assigned to threads and processes alike. This may be done by assigning a chunk
of the data and having each thread/process execute the same computations on the assigned
block, or it may be some method of assigning a computation that involves executing a different
portion of the code within the application.

Sharing data

There will be times when applications must share data. It may be the value of a counter or a
vector of floating-point values or a list of graph vertices. Whatever it happens to be, threads
and processes alike will need to have access to it during the course of the computation.
Obviously, the methods of sharing data will vary; shared-memory programs simply access a
designated location in memory, while distributed-memory programs must actively send and
receive the data to be shared.

Static/dynamic allocation of work

Depending on the nature of the serial algorithm, the resulting concurrent version, and the
number of threads/processes, you may assign all the work at one time (typically at the outset
of the computation) or over time as the code executes. The former method is known as a static
allocation since the original assignments do not change once they have been made. The latter
is known as dynamic allocation since work is doled out when it is needed. Under dynamic
allocation, you may find that the same threads do not execute the same pieces of work from
one run to another, while static allocation will always assign the same work to the same threads
(if the number of threads is the same) each and every time.

16 C H A P T E R 1 :   W A N T T O G O F A S T E R ? R A I S E Y O U R H A N D S I F Y O U W A N T T O G O F A S T E R !

Typically, if the work can be broken up into a number of parts that is equal to the number of
threads/processes, and the execution time is roughly the same for each of those parts, a static
allocation is best. Static allocation of work is always the simplest code to implement and to
maintain. Dynamic allocation is useful for cases when there are many more pieces of work
than threads and the amount of execution time for each piece is different or even unknown
at the outset of computation. There will be some overhead associated with a dynamic allocation
scheme, but the benefits will be a more load-balanced execution.

Features Unique to Shared Memory

These next few items are where distributed-memory and shared-memory programming differ.
If you’re familiar with distributed-memory parallelism, you should be able to see the
differences. For those readers not familiar with distributed-memory parallelism, these points
and ideas are still going to be important to understand.

Local declarations and thread-local storage

Since everything is shared in shared memory, there are times it will be useful to have a private
or local variable that is accessed by only one thread. Once threads have been spawned, any
declarations within the path of code execution (e.g., declarations within function calls) will be
automatically allocated as local to the thread executing the declarative code. Processes
executing on a node within a distributed-memory machine will have all local memory within
the node.

A thread-local storage (TLS) API is available in Windows threads and POSIX threads. Though
the syntax is different in the different threaded libraries, the API allocates some memory per
executing thread and allows the thread to store and retrieve a value that is accessible to only
that thread. The difference between TLS and local declarations is that the TLS values will persist
from one function call to another. This is much like static variables, except that in TLS, each
thread gets an individually addressable copy.

Memory effects

Since threads are sharing the memory available to the cores on which they are executing, there
can be performance issues due to that sharing. I’ve already mentioned storage conflicts and
data races. Processor architecture will determine if threads share or have access to separate
caches. Sharing caches between two cores can effectively cut in half the size of the cache
available to a thread, while separate caches can make sharing of common data less efficient.
On the good side, sharing caches with commonly accessed, read-only data can be very effective,
since only a single copy is needed.

False sharing is a situation where threads are not accessing the same variables, but they are
sharing a cache line that contains different variables. Due to cache coherency protocols, when
one thread updates a variable in the cache line and another thread wants to access something

S h a r e d - M e m o r y P r o g r a m m i n g V e r s u s D i s t r i b u t e d - M e m o r y P r o g r a m m i n g 17

else in the same line, that line is first written back to memory. When two or more threads are
repeatedly updating the same cache line, especially from separate caches, that cache line can
bounce back and forth through memory for each update.

Communication in memory

Distributed-memory programs share data by sending and receiving messages between
processes. In order to share data within shared memory, one thread simply writes a value into
a memory location and the other thread reads the value out of that memory location. Of course,
to ensure that the data is transferred correctly, the writing thread must deposit the value to be
shared into memory before the reading thread examines the location. Thus, the threads must
synchronize the order of writing and reading between the threads. The send-receive exchange
is an implicit synchronization between distributed processes.

Mutual exclusion

In order to communicate in memory, threads must sometimes protect access to shared memory
locations. The means for doing this is to allow only one thread at a time to have access to shared
variables. This is known as mutual exclusion. Several different synchronization mechanisms
are available (usually dependent on the threading method you are using) to provide mutual
exclusion.

Both reading and writing of data must be protected. Multiple threads reading the same data
won’t cause any problems. When you have multiple threads writing to the same location, the
order of the updates to the memory location will determine the value that is ultimately stored
there and the value that will be read out of the location by another thread (recall the airline
reservation system that put two passengers in the same seat). When you have one thread
reading and one thread writing to the same memory location, the value that is being read can
be one of two values (the old value or the new value). It is likely that only one of those will
be the expected value, since the original serial code expects only one value to be possible. If
the correct execution of your threaded algorithm depends upon getting a specific value from
a variable that is being updated by multiple threads, you must have logic that guarantees the
right value is written at the correct time; this will involve mutual exclusion and other
synchronization.

Producer/consumer

One algorithmic method you can use to distribute data or tasks to the processes in distributed-
memory programs is boss/worker. Worker processes send a message to the boss process
requesting a new task; upon receipt of the request, the boss sends back a message/task/data to
the worker process. You can write a boss/worker task distribution mechanism in threads, but
it requires a lot of synchronization.

To take advantage of the shared memory protocols, you can use a variation of boss/worker
that uses a shared queue to distribute tasks. This method is known as producer/consumer. The

18 C H A P T E R 1 :   W A N T T O G O F A S T E R ? R A I S E Y O U R H A N D S I F Y O U W A N T T O G O F A S T E R !

producer thread creates encapsulated tasks and stores them into the shared queue. The
consumer threads pull out tasks from the queue when they need more work. You must protect
access to the shared queue with some form of mutual exclusion in order to ensure that tasks
being inserted into the queue are placed correctly and that tasks being removed from the queue
are assigned to a single thread only.

Readers/writer locks

Since it is not a problem to have multiple threads reading the same shared variables, using
mutual exclusion to prevent multiple reader threads can create a performance bottleneck.
However, if there is any chance that another thread could update the shared variable, mutual
exclusion must be used. For situations where shared variables are to be updated much less
frequently than they are to be read, a readers/writer lock would be the appropriate
synchronization object.

Readers/writer locks allow multiple reader threads to enter the protected area of code accessing
the shared variable. Whenever a thread wishes to update (write) the value to the shared
variable, the lock will ensure that any prior reader threads have finished before allowing the
single writer to make the updates. When any writer thread has been allowed access to the
shared variable by the readers/writer lock, new readers or other threads wanting write access
are prevented from proceeding until the current writing thread has finished.

This Book’s Approach to Concurrent Programming
While writing this book, I was reading Feynman Lectures on Computation (Perseus Publishing,
1996). In Chapter 3, Feynman lectures on the theory of computation. He starts by describing
finite state machines (automata) and then makes the leap to Turing machines. At first I was a
bit aghast that there was nothing at all about push-down automata or context-free languages,
nothing about nondeterministic finite-state machines, and nothing about how this all tied into
grammars or recognizing strings from languages. A nice progression covering this whole range
of topics was how I was taught all this stuff in my years studying computer science.

I quickly realized that Feynman had only one lecture to get through the topic of Turing
machines and the ideas of computability, so he obviously couldn’t cover all the details that I
learned over the course of eight weeks or so. A bit later, I realized that the target audience for
his lecture series wasn’t computer science students, but students in physics and mathematics.
So he only needed to cover those topics that gave his students the right background and enough
of a taste to get some insight into the vast field of computability theory.

This is what I’m hoping to do with this book. I don’t want to give you all the history or theory
about concurrent and parallel programming. I want to give you a taste of it and some practical
examples so that you (the brilliant person and programmer that I know you to be) can take
them and start modifying your own codes and applications to run in parallel on multicore
processors. The algorithms in the later chapters are algorithms you would find in an

T h i s B o o k ’ s A p p r o a c h t o C o n c u r r e n t P r o g r a m m i n g 19

introductory algorithms course. While you may never use any of the concurrent algorithms in
this book, the codes are really meant to serve as illustrations of concurrent design methods
that you can apply in your own applications. So, using the words of chef Gordon Ramsay, I
want to present a “simple and rustic” introduction to concurrent programming that will give
you some practice and insight into the field.

20 C H A P T E R 1 :   W A N T T O G O F A S T E R ? R A I S E Y O U R H A N D S I F Y O U W A N T T O G O F A S T E R !

C H A P T E R T W O

Concurrent or Not Concurrent?

TO GET THINGS STARTED , I WANT TO FIRST TALK ABOUT TWO DESIGN METHODS FOR concurrent
algorithms, but I want to do it abstractly. Now, before you roll your eyes too far back and hurt
yourself, let me say that there will be plenty of code examples in later chapters to give
concreteness to the ideas that are presented here. This is a book on the design of concurrent
algorithms, and in this chapter I’ve collected a lot of the wisdom on initial approaches that
apply to a large percentage of code you’re likely to encounter (it can get pretty dry without
code to look at, so be sure you’re well hydrated before you start).

In addition, I want to let you know that not every bit of computation can be made concurrent,
no matter how hard you try. To save you the time of trying to take on too many impossible
things in the course of your day, I have examples of the kinds of algorithms and computations
that are not very amenable to concurrency in the section “What’s Not Parallel” on page 42.
When any of those examples can be modified to allow for concurrent execution, I’ve included
hints and tips about how to do that.

Design Models for Concurrent Algorithms
If you’ve got a sequential code that you want to transform into a concurrent version, you need
to identify the independent computations that can be executed concurrently. The way you
approach your serial code will influence how you reorganize the computations into a
concurrent equivalent. One way is task decomposition, in which the computations are a set of
independent tasks that threads can execute in any order. Another way is data
decomposition, in which the application processes a large collection of data and can compute
every element of the data independently.

The next two sections will describe these approaches in more detail and give an example of a
problem that falls into each category. These two models are not the only possibilities, but I’ve
found them to be the two most common. For other patterns of computation and how to
transform them into concurrent algorithms, read Patterns for Parallel Programming by
Timothy G. Mattson et al. (Addison-Wesley, 2004). Many of the ideas presented in the next
two sections are rooted in material from that book.

Task Decomposition

When you get right down to it, any concurrent algorithm is going to turn out to be nothing
more than a collection of concurrent tasks. Some may be obvious independent function calls
within the code. Others may turn out to be loop iterations that can be executed in any order
or simultaneously. Still others might turn out to be groups of sequential source lines that can
be divided and grouped into independent computations. For all of these, you must be able to
identify the tasks and decompose the serial code into concurrently executable work. If you’re
familiar enough with the source code and the computations that it performs, you may be able
to identify those independent computations via code inspection.

22 C H A P T E R 2 :   C O N C U R R E N T O R N O T C O N C U R R E N T ?

As I’ve implied, the goal of task decomposition, or any concurrent transformation process, is
to identify computations that are completely independent. Unfortunately, it is the rare case
where the serial computation is made up of sequences of code that do not interact with each
other in some way. These interactions are known as dependencies, and before you can make
your code run in parallel, you must satisfy or remove those dependencies. The section “What’s
Not Parallel” on page 42 describes some of these dependencies and how you might overcome
them.

You will find that, in most cases, you can identify the independent tasks at the outset of the
concurrent computation. After the application has defined the tasks, spawned the threads, and
assigned the tasks to threads (more details on these steps in a moment), almost every
concurrent application will wait until all the concurrent tasks have completed. Why? Well,
think back to the original serial code. The serial algorithm did not go on to the succeeding phase
until the preceding portion was completed. That’s why we call it serial execution. We usually
need to keep that sequence of execution in our concurrent solutions in order to maintain the
sequential consistency property (getting the same answer as the serial code on the same input
data set) of the concurrent algorithm.

The most basic framework for doing concurrent work is to have the main or the process thread
define and prepare the tasks, launch the threads to execute their tasks, and then wait until all
the spawned threads have completed. There are many variations on this theme. Are threads
created and terminated for each portion of parallel execution within the application? Could
threads be put to “sleep” when the assigned tasks are finished and then “woken up” when new
tasks are available? Rather than blocking after the concurrent computations have launched,
why not have the main thread take part in executing the set of tasks? Implementing any of
these is simply a matter of programming logic, but they still have the basic form of preparing
tasks, getting threads to do tasks, and then making sure all tasks have been completed before
going on to the next computation.

Is there a case in which you don’t need to wait for the entire set of tasks to complete before
going to the next phase of computation? You bet. Consider a search algorithm. If your tasks
are to search through a given discrete portion of the overall data space, does it make any sense
to continue searching when you have located the item you were looking for? The serial code
was likely written to stop searching, so why should the concurrent tasks continue to waste
execution resources in an unproductive manner? To curtail the execution of threads before
the natural termination point of tasks requires additional programming logic and overhead.
Threads will need to periodically check the status of the overarching task to determine whether
to continue or wind things up. If the original search algorithm was to find all instances of an
item, each thread would examine all assigned data items and not need to worry about early
termination.

You may also encounter situations in which new tasks will be generated dynamically as the
computation proceeds. For example, if you are traversing a tree structure with some
computation at each node, you might set up the tasks to be the traversal of each branch rooted

D e s i g n M o d e l s f o r C o n c u r r e n t A l g o r i t h m s 23

at the current node. For a binary tree, up to two tasks would be created at each internal node.
The mechanics of encapsulating these new tasks and assigning them to threads is all a matter
of additional programming.

There are three key elements you need to consider for any task decomposition design:

• What are the tasks and how are they defined?

• What are the dependencies between tasks and how can they be satisfied?

• How are the tasks assigned to threads?

Each of these elements is covered in more detail in the following sections.

What are the tasks and how are they defined?

The ease of identifying independent computations within an application is in direct proportion
to your understanding of the code and computations being performed by that code. There isn’t
any procedure, formula, or magic incantation that I know of where the code is input and out
pops a big neon sign pointing to the independent computations. You need to be able to mentally
simulate the execution of two parallel streams on suspected parts of the application to
determine whether those suspected parts are independent of each other (or might have
manageable dependencies).

Simulating the parallel or concurrent execution of multiple threads on given source code is a
skill that has been extremely beneficial to me in both designing concurrent algorithms and in
proving them to be error-free (as we shall see in Chapter 3). It takes some practice, but like
everything else that takes practice, the more you do it, the better you will get at doing it. While
you’re reading my book, I’ll show you how I approach the art of concurrent design, and then
you’ll be better equipped to start doing this on your own.

N O T E
There is one tiny exception for not having a “magic bullet” that can identify potentially

independent computations with loop iterations. If you suspect a loop has independent

iterations (those that can be run in any order), try executing the code with the loop iterations

running in reverse of their original order. If the application still gets the same results, there

is a strong chance that the iterations are independent and can be decomposed into tasks.

Beware that there might still be a “hidden” dependency waiting to come out and bite you

when the iterations are run concurrently—for example, the intermediate sequence of values

stored in a variable that is harmless when the loop iterations were run in serial, even when

run backward.

To get the biggest return on investment, you should initially focus on computationally intense
portions of the application. That is, look at those sections of code that do the most computation
or account for the largest percentage of the execution time. You want the ratio of the

24 C H A P T E R 2 :   C O N C U R R E N T O R N O T C O N C U R R E N T ?

performance boost to the effort expended in transforming, debugging, and tuning of your
concurrent code to be as high as possible. (I freely admit that I’m a lazy programmer—anytime
I can get the best outcome from the least amount of work, that is the path I will choose.)

Once you have identified a portion of the serial code that can be executed concurrently, keep
in mind the following two criteria for the actual decomposition into tasks:

• There should be at least as many tasks as there will be threads (or cores).

• The amount of computation within each task (granularity) must be large enough to offset
the overhead that will be needed to manage the tasks and the threads.

The first criterion is used to assure that you won’t have idle threads (or idle cores) during the
execution of the application. If you can create the number of tasks based on the number of
threads that are available, your application will be better equipped to handle execution
platform changes from one run to the next. It is almost always better to have (many) more
tasks than threads. This will allow the scheduling of tasks to threads greater flexibility to achieve
a good load balance. This is especially true when the execution times of each task are not all
the same or the time for tasks is unpredictable.

The second criterion seeks to give you the opportunity to actually get a performance boost in
the parallel execution of your application. The amount of computation within a task is called
the granularity. The more computation there is within a task, the higher the granularity; the
less computation there is, the lower the granularity. The terms coarse-grained and fine-
grained are used to describe instances of high granularity and low granularity, respectively.
The granularity of a task must be large enough to render the task and thread management
code a minuscule fraction of the overall parallel execution. If tasks are too small, execution of
the code to encapsulate the task, assign it to a thread, handle the results from the task, and
any other thread coordination or management required in the concurrent algorithm can
eliminate (best case) or even dwarf (worst case) the performance gained by running your
algorithm on multiple cores.

N O T E
Granularity, defined another way, is the amount of computation done before

synchronization is needed. The longer the time between synchronizations, the coarser the

granularity will be. Fine-grained concurrency runs the danger of not having enough work

assigned to threads to overcome the overhead costs (synchronizations) of using threads.

Adding more threads, when the amount of computation doesn’t change, only exacerbates

the problem. Coarse-grained concurrency has lower relative overhead costs and tends to be

more readily scalable to an increase in the number of threads.

Consider the case where the time for overhead computations per task is the same for two
different divisions of tasks. If one task divides the total work into 16 tasks, and the other uses

D e s i g n M o d e l s f o r C o n c u r r e n t A l g o r i t h m s 25

only 4 tasks, which scheme would run faster on four cores with four threads? Figure 2-1
illustrates the two task decompositions and their execution with overhead added.

Core 0
overhead

task

overhead

task

overhead

task

overhead

task

Core 1
overhead

task

overhead

task

overhead

task

overhead

task

Core 2
overhead

task

overhead

task

overhead

task

overhead

task

Core 3
overhead

task

overhead

task

overhead

task

overhead

task

Core 0
overhead

task

Core 1
overhead

task

Core 2

(a) Fine-grained decomposition (b) Coarse-grained decomposition

overhead

task

Core 3
overhead

task

FIGURE 2-1. Task granularity example

You can imagine that the height of each box in Figure 2-1 represents the amount of time
required to execute the associated computation. With many small tasks—each requiring a
separate overhead computation—Figure 2-1 (a), the fine-grained solution, will take longer to
run than the same work divided into fewer larger tasks, as shown in Figure 2-1 (b), the coarse-
grained decomposition. Larger tasks also provide better opportunities for other performance
benefits (e.g., reuse of cache, more efficient memory access patterns) that are already part of
the serial algorithm.

You will need to strike a balance between these two criteria. For a fixed amount of work, the
larger you define your tasks to be, the fewer tasks there will be to assign to threads. You may
find that in order to satisfy the second criterion, which is the more important of the two, you
will need to define a number of tasks that is fewer than the number of threads. Because
reducing execution time is the main reason for writing and running concurrent code, having
an application that might not utilize all the cores available is more desirable than having an
application that performs worse (takes longer to execute) when using all the cores in the
platform.

Finally, don’t be afraid to go back and rework your task decomposition. If your initial
decomposition does not meet the criteria, you should consider alternate decompositions. Also,
if you find that you are not achieving the performance levels you expect, you may need to go
back and redefine the tasks, the number of threads to be used, or how those tasks are assigned
to threads.

26 C H A P T E R 2 :   C O N C U R R E N T O R N O T C O N C U R R E N T ?

What are the dependencies between tasks and how can they be satisfied?

Two types of dependencies can occur between tasks. The first is order dependency, where some
task relies on the completed results of the computations from another task. This reliance can
be a direct need to use the computed values as input to the succeeding task, or it may simply
be the case that the task that follows will be updating the same memory locations as the
previous task and you must ensure that all of the previous updates have been completed before
proceeding. Both of these cases describe a potential data race, which we need to avoid.

For example, if you are building a house, putting up the roof involves attaching the rafters to
the walls, laying down the decking, and applying the shingles. The dependence between these
three tasks is one of execution order. You can’t put down shingles until the decking is there,
and you can’t nail down the decking unless you have the rafters in place. So, instead of hiring
three teams to do these three tasks in parallel, you can hire one roofing crew to do all three in
the order required (there is parallelism within each of the roofing steps, plus the act of putting
on the roof is independent of installing the electrical wiring, the plumbing, and putting up
drywall).

To satisfy an execution order constraint, you can schedule tasks that have an order dependency
onto the same thread and ensure that the thread executes the tasks in the proper sequence.
The serial code was written with the order dependency already taken care of. So, the serial
algorithm should guide the correct decomposition of the computations into tasks and
assignment of those tasks to threads. Still, even after grouping tasks to execute on threads,
there may be order constraints between threads. If regrouping tasks to threads is not an option
or will severely hurt performance, you will be forced to insert some form of synchronization
to ensure correct execution order.

The second type of dependency is data dependency. Identifying potential data dependencies
can be straightforward: look for those variables that are featured on the left side of the
assignment operator. Data races require that the variable in question have at least one thread
that is writing to that variable. Check for any assignment of values to the same variable that
might be done concurrently as well as any updates to a variable that could be read concurrently.
Of course, using pointers to reference memory locations can make the identification process
trickier. There are tools (covered in Chapter 11) that can assist in finding nonobvious data
dependencies in your code.

Solving data dependencies can be more complicated than solving execution order
dependencies. In the latter, the sequence of execution within the serial code gives us the
solution; in the former, the serial code being written with the assumption of a single-threaded
execution leads to the problem.

If you’re fortunate enough to have code with no dependencies, sometimes called enchantingly
parallel, you can skip down to the next section about scheduling. If you’re like the rest of us
and aren’t so fortunate, examine your dependencies to see if they might be removable
(recurrences and induction variables) or separable (reduction computations). There are

D e s i g n M o d e l s f o r C o n c u r r e n t A l g o r i t h m s 27

remedies, in many cases, for these dependencies. Those options, as well as a description of
these two dependency classes, are discussed in “What’s Not Parallel” on page 42.

Now let’s go over the two easiest solutions for simple data conflicts between tasks. These are
using local variables and adding mutual exclusion code. Consider the pseudocode given in
Example 2-1 (if you live in Chicago or New York, substitute some other place like Los Angeles
when computing population differences).

EXAMPLE 2-1. Pseudocode with shared variable

popDiff = abs(Population[MyTown] - Population[NewYork]);
DoSomething(popDiff, MyTown, NewYork);
popDiff = abs(Population[MyTown] - Population[Chicago]);
DoSomething(popDiff, MyTown, Chicago);

If we know that concurrent calls to the DoSomething() function are thread-safe (i.e., there are
no side effects or dependencies when there is more than one concurrent call to the function),
we can assign the first two lines of the example to one thread and the last two lines to a second
thread. This will create a data race on the popDiff variable. Since this variable is used only as a
temporary or “work” variable, allocating a local copy to each thread will eliminate the problem.

Depending on the threading model that you are using to implement your concurrent
algorithm, there can be several ways to create variables that are accessible only to a given
thread. In all cases, if you declare a variable within a function that is executed by threads, those
variables will be local to the calling thread when they are allocated. Explicitly allocating space
from a thread’s stack (say with the alloca() function) is another way. OpenMP has the
private clause to generate local copies of variables for each thread within the parallel region to
which the clause is attached. Both Windows and POSIX threads include a thread-local storage
(TLS) API that will allocate memory to hold copies of variables, one per thread, and allow
threads to have access only to the copy that is earmarked for that thread.

N O T E
The TLS API is pretty “heavy.” I wouldn’t recommend using it for things like local work

variables within a single routine. Variables that are allocated and accessed via the TLS are

persistent across function scopes. If you need local copies of a variable and that variable and

its contents need to be available to different functions or disparate calls to the same function

executed by the thread, TLS is the mechanism that can give you the private copy and the

persistence of value required.

When all else fails, when you don’t have the option to make a local copy of a shared variable,
when none of the transformations given in “What’s Not Parallel” on page 42 can eliminate
the data dependency, the only option left is to explicitly provide mutually exclusive access to
the shared variable. In most cases a simple lock, or mutex, will suffice. In some instances, you
can use a less onerous atomic operation. Different threading models will have different options

28 C H A P T E R 2 :   C O N C U R R E N T O R N O T C O N C U R R E N T ?

of synchronization objects, and different algorithms will have different protection
requirements.

It should go without saying that you will want to use the option that has the lowest impact on
performance, since such added synchronization is overhead that was not in the original serial
code. This might mean trying several possibilities and even modifying the initial algorithm or
data structures to create the chance to use a better synchronization object. It is your job as the
programmer to find the best option for each situation you encounter.

How are the tasks assigned to threads?

Tasks must be assigned to threads for execution. Perhaps the more correct way to say this is
that threads must know which tasks to execute. In either case, you always want to assure that
the amount of computation done by threads is roughly equivalent. That is, the load (of
computation) is balanced per thread. We can allocate tasks to threads in two different ways:
static scheduling or dynamic scheduling.

N O T E
Under worksharing constructs in OpenMP and the parallel algorithms of Intel Threading

Building Blocks (TBB), the actual assignment of tasks to threads is done “under the covers.”

The programmer can influence that assignment to some degree, though. Even if you use only

one of these two threading libraries for your concurrent coding, you should still read through

the advice in this section to help you better influence the task assignments in your

applications.

In static scheduling, the division of labor is known at the outset of the computation and doesn’t
change during the computation. If at all possible, when developing your own concurrent code,
try to use a static schedule. This is the easiest method to program and will incur the least amount
of overhead.

The mechanics and logic of code needed to implement a static schedule will involve each thread
having a unique identification number in the range of [0, N–1] for N threads. This number can
be easily assigned at the time a thread is created in the order that threads are created (code
that can generate unique identification numbers to threads will be part of several
implementation examples in later chapters). If tasks are collections of separate, independent
function calls or groups of sequential source lines, you can group those calls or code lines into
tasks that are assigned to threads through a thread’s ID number (e.g., through a switch
statement). If tasks are loop iterations, you can divide the total number of iterations by the
number of threads and assign block(s) of iterations to threads, again through the thread’s ID
number. You will have to add additional logic to compute the start and end values of the loop
bounds in order for each thread to determine the block that should be executed.

D e s i g n M o d e l s f o r C o n c u r r e n t A l g o r i t h m s 29

When assigning loop iterations into blocks, you need to be sure that each thread doesn’t overlap
execution of an iteration assigned to another thread and that all the loop iterations are covered
by some thread. You won’t get the correct results if threads execute an iteration multiple times
or leave out the computation of some iterations. An alternative to assigning loop iterations into
blocks is to use the thread’s ID number as the starting value of the loop iterator and increment
that iterator by the number of threads, rather than by 1. For example, if you have two threads,
one thread will execute the odd-numbered iterations and the other thread will execute the
even iterations. Obviously, you will need to make adjustments to where the loop starts and
how to compute the next iteration per thread if the loop iterator doesn’t start at 0 and is already
incremented by something other than 1. However, the implementation of setting up N threads
to each do every Nth iteration will involve fewer code changes than dividing the iteration set
into separate blocks.

Static scheduling is best used in those cases where the amount of computation within each
task is the same or can be predicted at the outset. If you have a case where the amount of
computation between tasks is variable and/or unpredictable, then you would be better served
by using a dynamic scheduling scheme.

Under a dynamic schedule, you assign tasks to threads as the computation proceeds. The
driving force behind the use of a dynamic schedule is to try to balance the load as evenly as
possible between threads. Assigning tasks to threads is going to incur overhead from executing
the added programming logic to carry out the assignment and from having threads seek out a
new task.

There are many different ways to implement a dynamic method for scheduling tasks to threads,
but they all require a set of many more tasks than threads. Probably the easiest scheduling
scheme involves indexing the tasks. A shared counter is used to keep track of and assign the
next task for execution. When seeking a new task, a thread gains mutually exclusive access to
the counter, copies the value into a local variable, and increments the counter value for the
next thread.

Another simple dynamic scheduling method involves setting up a shared container (typically
a queue) that can hold tasks and allow threads to pull out a new task once the previous task
is complete. Tasks (or adequate descriptions of tasks) must be encapsulated into some structure
that can be pushed into the queue. Access to the queue must be mutually exclusive between
threads to ensure that threads get unique tasks and no tasks are lost through some corruption
of the shared container.

If tasks require some preprocessing before their assignment to threads, or if tasks are not all
known at the outset of computation, you may need more complex scheduling methods. You
can set one of your threads aside to do the preprocessing of each task or receive new tasks as
they arise. If the computation threads rendezvous with this extra thread in order to receive the
next task for execution, you have a boss/worker algorithm. By placing a shared container to

30 C H A P T E R 2 :   C O N C U R R E N T O R N O T C O N C U R R E N T ?

distribute tasks between the threads preparing tasks and the threads executing the task, you
get the producer/consumer method. I mentioned these methods briefly in Chapter 1.

Example: numerical integration

Now that you’ve seen the criteria used to define and implement a task decomposition, let’s put
those ideas into practice on a very simple application to compute an approximate value of the
constant pi. We won’t worry about the details of how to implement the concurrency with
threads, but we can identify the design decisions we need to make, as well as other
considerations that we need to take into account to carry through with the implementation.

Numerical integration is a method of computing an approximation of the area under the curve
of a function, especially when the exact integral cannot be solved. For example, the value of
the constant pi can be defined by the following integral. However, rather than solve this
integral exactly, we can approximate the solution by use of numerical integration:

The code in Example 2-2 is an implementation of the numerical integration midpoint rectangle
rule to solve the integral just shown. To compute an approximation of the area under the curve,
we must compute the area of some number of rectangles (num_rects) by finding the midpoint
(mid) of each rectangle and computing the height of that rectangle (height), which is simply
the function value at that midpoint. We add together the heights of all the rectangles (sum) and,
once computed, we multiply the sum of the heights by the width of the rectangles (width) to
determine the desired approximation of the total area (area) and the value of pi.

I won’t create a threaded version of this code, but you’re welcome to give it a try on your own
based on the task decomposition discussion later.

EXAMPLE 2-2. Numerical integration code to approximate the value of pi

static long num_rects=100000;
void main()
{
 int i;
 double mid, height, width, sum = 0.0;
 double area;

 width = 1.0/(double) num_rects;
 for (i = 0; i < num_rects; i++){
 mid = (i + 0.5) * width;
 height = 4.0/(1.0 + mid*mid);
 sum += height;
 }

D e s i g n M o d e l s f o r C o n c u r r e n t A l g o r i t h m s 31

 area = width * sum;
 printf("Computed pi = %f\n",area);
}

What are the independent tasks in this simple application? The computation of the height for
a rectangle is independent of the computation of any other rectangle. In addition, notice that
the loop that performs these calculations holds the bulk of the computation for the entire
application. The loop is an execution hotspot that you should examine for independent
computations.

Are there any dependencies between these tasks and, if so, how can we satisfy them? The two
work variables, mid and height, are assigned values in each iteration. If each thread had a local
copy, that copy could be used during execution of iterations that are assigned to a thread. Also,
the iteration variable, i, is updated for each iteration. Each thread will need a local copy in
order to avoid interfering with the execution of iterations within other threads. The sum variable
is updated in each iteration, but since this value is used outside of the loop, we can’t have each
thread work with a local copy that would be discarded after the thread was done. This is a
reduction, and you’ll find tips on solving such situations later in the section “What’s Not
Parallel” on page 42. The quick and dirty solution would be to put a synchronization object
around the line of code updating sum so that only one thread at a time will write to the variable.

How should you assign tasks to threads? With loop iterations as tasks, we can assign blocks of
iterations to threads based on an assigned ID number. Alternatively, we can have threads
execute alternating iterations based on the number of threads. Because there are no indexed
array elements in the loop, and thus no cache issues, I would recommend the latter approach.

The final piece to consider is adding the results of all the individual loop computations together
and storing them in a location that you can print from. This will depend directly on how the
reduction operation on sum is handled.

Data Decomposition

Before I get started on data decomposition, I want to make sure that you haven’t skipped down
to this section without reading the previous section on task decomposition. There is a lot of
good stuff in that section and I want to make sure you’ve covered it and absorbed it. Many of
the things that are covered there will apply directly to data decomposition, and I won’t likely
repeat them here. So, even if you think you will only ever be working on data decomposition
solutions for the rest of your programming career, be sure to read the section on task
decomposition. You’ll get a better understanding of the problems that are shared between the
two decomposition methods.

When you start to examine a serial application for transformation into an equivalent
concurrent solution, the first feature of the computations you might identify is that the
execution is dominated by a sequence of update operations on all elements of one or more

32 C H A P T E R 2 :   C O N C U R R E N T O R N O T C O N C U R R E N T ?

large data structures. If these update computations are independent of each other, you have a
situation where you can express the concurrency of your application by dividing up the data
structure(s) and assigning those portions to threads, along with the corresponding update
computations (tasks). This method of defining tasks based on assigning blocks of large data
structures to threads is known as data decomposition. In Mattson’s Patterns for Parallel
Programming, this is called “geometric decomposition.”

How you divide data structures into contiguous subregions, or “chunks,” of data will depend
on the type of data structure. The most common structure that falls into the data decomposition
category is an array. You can divide arrays along one or more of their dimensions. Other
structures that use an array as a component (e.g., graph implemented as an adjacency matrix)
can be divided into logical chunks as well. It will all depend on what the computations are and
how independent the processing is for each chunk.

I would add list structures to the set of decomposable data structures, but only if there is an
easy way to identify and access sublists of discrete elements. In a linked list implementation
this would require index pointers that reference alternate entry points into the list. For
example, given a linked list of people arranged alphabetically, the first person whose name
starts with a new letter of the alphabet would be referenced with an external pointer for that
letter. If the concurrent version of the code needs to set up these external references as part of
its overhead, make sure the amount of computation is sufficient to eclipse the additional
overhead time. Otherwise, consider a different approach in either the data structure or how
you implement the concurrency.

However you decide to do it, the decomposition into chunks implies the division of
computation into tasks that operate on elements of each chunk, and those tasks are assigned
to threads. The tasks will then be executed concurrently and each task will update the chunk
associated with it. Data within an assigned chunk is readily available and safe to use, since no
other tasks will be updating those elements. On the other hand, the update computations may
require data from neighboring chunks. If so, we will have to share data between tasks.
Accessing or retrieving essential data from neighboring chunks will require coordination
between threads.

As with task decomposition, load balance is an important factor to take into consideration,
especially when using chunks of variable sizes. If the data structure has a nice, regular
organization and all the computations on that structure always take the same amount of
execution time, you can simply decompose the structure into chunks with the same number
of elements in some logical and efficient way. If your data isn’t organized in a regular pattern
or the amount of computation is different or unpredictable for each element in the structure,
decomposing the structure into tasks that take roughly the same amount of execution time is
a much less straightforward affair. Perhaps you should consider a dynamic scheduling of
chunks to threads in this case.

D e s i g n M o d e l s f o r C o n c u r r e n t A l g o r i t h m s 33

The next sections outline the key elements that every successful data decomposition solution
must account for. It will also address some thoughts on how to deal with sharing of neighboring
data to best assure a load balance across computations on data chunks. The three key elements
you need to consider for any data decomposition design are:

• How should you divide the data into chunks?

• How can you ensure that the tasks for each chunk have access to all data required for
updates?

• How are the data chunks assigned to threads?

Each of these elements is covered in more detail in the following sections.

How should you divide the data into chunks?

Partitioning the global data structure into chunks is at the heart of a data decomposition design.
The mechanics for doing this will depend mainly on the type of data structure you are
decomposing. For concreteness, I’ll deal with one- and two-dimensional arrays as examples.
The ideas here can be applied to other structures with a little ingenuity on your part.

Since each chunk of data will have an associated task, many of the same criteria that we had
when defining tasks for task decomposition can be applied to the chunks of data decomposition.
Specifically, make sure you have at least one chunk per thread (more is probably better) and
ensure that the amount of computation that goes along with that chunk is sufficient to warrant
breaking out that data as a separate chunk (now, aren’t you glad you read the task
decomposition section before starting into this section?).

With arrays of elements, you can divide the data into chunks at the individual element level,
at the row or column level, as groups of rows or columns, or blocks of nonoverlapping
subranges of rows and columns. Figure 2-2 shows a 4×4 array divided into chunks in several
different ways.

(a)
By individual

elements

(b)
By row

(c)
By groups of

columns

(d)
By blocks

FIGURE 2-2. Array decomposition examples

The amount of computation required by the associated task will be in direct proportion to the
number of elements in a chunk. As stated before, this is known as the granularity of the
computation and is exactly like what we had when we were considering how to define tasks.

34 C H A P T E R 2 :   C O N C U R R E N T O R N O T C O N C U R R E N T ?

However, data decompositions have an additional dimension that you must consider when
dividing data structures into chunks. This other dimension is the shape of the chunk.

The shape of a chunk determines what the neighboring chunks are and how any exchange of
data will be handled during the course of the chunk’s computations. Let’s say we have the case
that data must be exchanged across the border of each chunk (the term exchange refers to the
retrieval of data that is not contained within a given chunk for the purpose of using that data
in the update of elements that are in the local chunk). Reducing the size of the overall border
reduces the amount of exchange data required for updating local data elements; reducing the
total number of chunks that share a border with a given chunk will make the exchange
operation less complicated to code and execute.

Large granularity can actually be a detriment with regard to the shape of a chunk. The more
data elements there are within a chunk, the more elements that may require exchange of
neighboring data, and the more overhead there that may be to perform that exchange. When
deciding how to divide large data structures that will necessitate data exchanges, a good rule
of thumb is to try to maximize the volume-to-surface ratio. The volume defines the granularity
of the computations, and the surface is the border of chunks that require an exchange of data.
Figure 2-3 illustrates two different divisions of the same 4×8 data structure into two chunks.
Both chunks have the same number of elements (16), but the scheme on the left has eight
elements that share a border, whereas the scheme on the right has only four. If updates to each
chunk relied on accessing data in the other chunk across the border, the division shown on
the right would require fewer overall exchanges.

(a)
8 shared borders

(b)
4 shared borders

FIGURE 2-3. Volume-to-surface ratio examples

Irregular shapes may be necessary due to the irregular organization of the data. You need to
be more vigilant with chunks of irregular shapes to ensure that a good load balance can be
maintained, as well as a high enough granularity within the chunk to lessen the impact of
unavoidable overheads.

You may need to revise your decomposition strategy after considering how the granularity and
shape of the chunks affect the exchange of data between tasks. The division of data structures
into chunks influences the need to access data that resides in another chunk. The next section
develops ideas about accessing neighboring data that you should consider when deciding how
to best decompose a data structure into chunks.

D e s i g n M o d e l s f o r C o n c u r r e n t A l g o r i t h m s 35

How can you ensure that the tasks for each chunk have access to all data required for updates?

The updating of elements within a data chunk is typically the overwhelming source of
computation within concurrent algorithms that use a data decomposition scheme. Not unheard
of, but not as interesting, are applications that only read data from large structures. Even in
these cases, before an application has the ability to read it, the data must be created and the
elements of the data structure holding any data must be updated. I suspect that for applications
that simply input the data and then use it only for reference to support other computations,
task decomposition would be the better method for concurrent design.

If a chunk itself contains all the data required to update the elements within the chunk, there
is no need to coordinate the exchange of data between tasks. A more interesting case occurs
when some data that is required by a given chunk is held within a neighboring chunk. In that
case, we must find efficient means to exchange data between these nearby chunks. Two
methods for doing this come to mind: copy the data from the nearby chunk into structures
local to the task (thread), or access the data as needed from the nearby chunk. Let’s look at
the pros and cons of each of these.

The most obvious disadvantage for copying the necessary data not held in the assigned chunk
is that each task will require extra local memory in order to hold the copy of data. However,
once the data has been copied, there will be no further contention or synchronization needed
between the tasks to access the copies. Copying the data is best used if the data is available
before the update operation and won’t change while being copied or during the update
computations. This will likely mean some initial coordination between tasks to ensure that all
copying has been done before tasks start updating.

The extra local memory resources that are allocated to hold copied data are often known as
ghost cells. These cells are images of the structure and contents of data assigned to neighboring
chunks. For example, consider the division of data shown in Figure 2-3 (b). If the update
computation of an individual element required the data from the two elements on either side
of it in the same row, the whole column from the neighboring chunk bordering the split would
need to be accessible. Copying these data elements into ghost cells would allow the element
to access that data without interfering in the updates of the neighboring chunk. Figure 2-4
shows the allocated ghost cells and the copy operation performed by each thread to fill those
cells.

Another factor to consider when thinking about copying the required data is how many times
copying will be necessary. This all depends on the nature of the update computation. Are
repeated copies required for, say, an iterative algorithm that refines its solution over multiple
updates? Or is the data copy only needed once at the outset of the computation? The more
times the copy has to be carried out, the greater the overhead burden will be for the update
computations. And then there is the matter of the amount of data that needs to be copied. Too
many copy operations or too much data per copy might be an indicator that simply accessing
the required data directly from a neighboring chunk would be the better solution.

36 C H A P T E R 2 :   C O N C U R R E N T O R N O T C O N C U R R E N T ?

Original split with ghost cells Copying data into ghost cells

FIGURE 2-4. Using ghost cells to hold copied data from a neighboring chunk

Accessing data as needed takes full advantage of shared memory communication between
threads and the logic of the original serial algorithm. You also have the advantage of being able
to delay any coordination between threads until the data is needed. The downside is that you
must be able to guarantee that the correct data will be available at the right time. Data elements
that are required but located within a neighboring chunk may be in the process of receiving
updates concurrently with the rest of the elements in the neighboring chunk. If the local chunk
requires the “old” values of nonlocal data elements, how can your code ensure that those
values are not the “new” values? To answer this question or to know whether we must even
deal with such a situation, we must look at the possible interactions between the exchange of
data from neighboring chunks and the update operation of local chunk elements.

If all data is available at the beginning of tasks and that data will not change during the update
computation, the solution will be easier to program and more likely to execute efficiently. You
can either copy relatively small amounts of data into ghost cells or access the unchanging data
through shared memory. In order to perform the copy of nonlocal data, add a data gathering
(exchange) phase before the start of the update computations. Try to minimize the execution
time of the data-gathering phase, since this is pure overhead that was not part of the original
serial code.

If nonlocal data will be accessed (or copied) during update computations, you will need to add
code to ensure that the correct data will be found. Mixing exchange and update computations
can complicate the logic of your application, especially to ensure correct data is retrieved.
However, the serial application likely had this requirement, too, and the solution to the need
for accessing correct data concurrently should simply follow the serial algorithm as much as
possible.

For example, if you are modeling the distribution of heat from a source through a metal plate,
you can simulate the plate by a two-dimensional array of current temperatures at discrete
spatial locations. At each time step of the computation, the new value of each discrete location
is the average of the current temperature and the temperature of some set of neighboring cells.
Since this calculation will update the current temperature of a cell and skew the results of other

D e s i g n M o d e l s f o r C o n c u r r e n t A l g o r i t h m s 37

cells that use this cell’s value, the serial code will have a new and old plate array. The values
in the old array are used to update the new values. The roles of the plate arrays are switched
for the next time iteration. In the concurrent version of this application, the old plate is read
(only) to update the current temperatures in the new array. Thus, there is no need for
synchronization to access old data and there should be minimal changes to the serial source in
order to implement this concurrent solution.

How are the data chunks (and tasks) assigned to threads?

As with task decomposition, the tasks that are associated with the data chunks can be assigned
to threads statically or dynamically. Static scheduling is simplest since the coordination needed
for any exchange operations will be determined at the outset of the computations. Static
scheduling is most appropriate when the amount of computations within tasks is uniform and
predictable. Dynamic scheduling may be necessary to achieve a good load balance due to
variability in the computation needed per chunk. This will require (many) more tasks than
threads, but it also complicates the exchange operation and how you coordinate the exchange
with neighboring chunks and their update schedules.

Being the sharp reader that you are, you have no doubt noticed that in most of the discussion
over the last four pages or so I have used the term “task” rather than “thread.” I did this on
purpose. The tasks, defined by how the data structures are decomposed, identify what
interaction is needed with other tasks regardless of which thread is assigned to execute what
task. Additionally, if you are using a dynamic schedule of tasks, the number of tasks will
outnumber the total number of threads. In such a case, it will not be possible to run all tasks
in parallel. You may then come up against the situation where some task needs data from
another task that has not yet been assigned to execute on a thread. This raises the complexity
of your concurrent design to a whole other level, and I’m going to leave it to you to avoid such
a situation.

Example: Game of Life on a finite grid

Conway’s Game of Life is a simulation of organisms that live and die within cells arranged as
a grid. Each grid cell is either empty or hosts a living organism. Occupied cells are called “alive,”
while empty cells are “dead.” (See Figure 2-5 for an example of a portion of a grid with live
and dead cells.) The simulation charts the births and deaths of the organisms through successive
time steps or generations. For more information, see Wheels, Life, and Other Mathematical
Amusements by Martin Gardner (Freeman & Co., 1983) or the tens of millions of words written
and pictures drawn since the first computer simulation was written.

38 C H A P T E R 2 :   C O N C U R R E N T O R N O T C O N C U R R E N T ?

FIGURE 2-5. Game of Life example; black dots represent “live” cells

The state of cells can change from one generation to the next according to the following rules:

• The neighbors of a cell are the eight cells that border the given cell horizontally, vertically,
and diagonally.

• If a cell is alive but has one or fewer neighboring cells alive, or has four or more neighboring
cells alive, the cell will die of starvation or overcrowding, respectively, in the next
generation.

• Living cells with two or three living neighbors will remain alive in the next generation.

• If a cell is dead and has exactly three neighboring cells that are alive, there will be a birth
and the dead cell will become alive in the next generation. All other dead cells will remain
dead in the next generation.

• All births and deaths take place at exactly the same time. This means that a cell that will
be killed is still counted to help give birth to a neighboring cell.

In theory, the grid should be unbounded, but with only finite memory available in computer
platforms, the size of the grid “universe” is usually restricted. Still, a very large two-dimensional
array can hold current and successive generations of a simulation. The computations to decide
whether any cell lives, dies, or is born is independent of the computations of any other cell.
Thus, with the very large two-dimensional array and the update of elements in that array, the
Game of Life simulation is an excellent candidate for a data decomposition design.

Example 2-3 shows serial code for updating the status of each cell into the next generation
from the current generation. I assume that Grid is a data structure that is essentially a two-
dimensional array that can hold the values of the user-defined constants ALIVE and DEAD. The
grid array has rows indexed by 0 to N+1 and columns indexed by 0 to M+1. The extra rows and
columns, whose cells are not considered for update in the given routine, can be thought of as
boundary cells of the “universe” that are always dead (think of it as a wall of poison that can’t
be breached). By adding these boundary cells, I remove the need to deal with the grid edges
as a special case. After computing the neighbor count for a cell, the disposition of that cell in
the next generation is decided based on the rules just given. As with the task decomposition
example, I won’t create a threaded version of the code, but you’re welcome to give it a try on
your own based on the discussion that follows.

D e s i g n M o d e l s f o r C o n c u r r e n t A l g o r i t h m s 39

EXAMPLE 2-3. Game of Life routine to compute next generation configuration from current

void computeNextGen (Grid curr, Grid next, int N, int M)
{
 int count;
 for (int i = 1; i <= N; i++) {
 for (int j = 1; j <= M; j++) {
 count = 0;
 if (curr[i-1][j-1] == ALIVE) count++; // NW neighbor
 if (curr[i-1][j] == ALIVE) count++; // N neighbor
 if (curr[i-1][j+1] == ALIVE) count++; // NE neighbor
 if (curr[i][j-1] == ALIVE) count++; // W neighbor
 if (curr[i][j+1] == ALIVE) count++; // E neighbor
 if (curr[i+1][j-1] == ALIVE) count++; // SW neighbor
 if (curr[i+1][j] == ALIVE) count++; // S neighbor
 if (curr[i+1][j+1] == ALIVE) count++; // SE neighbor

 if (count <= 1 || count >= 4)
 next[i][j] = DEAD;
 else if (curr[i][j] == ALIVE && (count == 2 || count == 3))
 next[i][j] = ALIVE;
 else if (curr[i][j] == DEAD && count == 3)
 next[i][j] = ALIVE;
 else next[i][j] = DEAD;
 }
 }
 return;
}

What is the large data structure in this application and how can you divide it into chunks? I’ve
already given away the fact that we can divide the grid into chunks whose tasks can be assigned
to threads. What is the best way to perform the division? Refer to Figure 2-5, but think bigger.
Groups of rows or groups of columns or blocks seem the most natural divisions. You should
anticipate the question of which exchanges of data each potential division strategy will entail
and let that influence your answer.

Other factors to consider are the layout of the grid in memory, which may be anticipated within
the serial code already, and how each division scheme might adversely affect the given layout.
The amount of new code and line changes needed to transform the source code can be a factor
influencing your decision. Dividing by rows would require modifications to the i loop, dividing
by columns would require modifications to the j loop, and using a block division would require
you to modify both the i and j loops.

For a chosen data decomposition, what exchange of data between tasks is required and how
will this be accomplished? Since you need access to all eight neighbors of a given cell, if any
neighbor cells are in a different chunk, there will need to be some form of data exchange.
However, the code uses the curr grid for counting neighbors and is read-only. Each task can
simply access the data when it is needed without fear of getting the wrong value or causing a
data race with another task. On the other hand, if the rules of computing the next generation
allowed us to make changes within the same grid that was being used to count neighbors, it

40 C H A P T E R 2 :   C O N C U R R E N T O R N O T C O N C U R R E N T ?

might be better to copy data from other chunks into local ghost cells. If not, the results of your
concurrent code may be different than the serial version.

How should you distribute the data chunks to tasks? Since you can determine the amount of
computation for any grid cell and any collection of cells at design time, a static distribution will
work well. In fact, I would recommend that the number of chunks be equal to the number of
threads available.

What are the dependencies between tasks? This is a question that comes from our discussion
of task decomposition and goes beyond the exchange of data needed between chunks. The
answers to this question are derived from the serial code and the modifications necessary (from
all the previous design decisions you’ve made). The count is a temporary work variable, so a
local copy per thread takes care of that. Each thread will also need a copy of the two loop
iteration variables. The global arrays are safe, since curr is only read and the updates to the
elements in the next grid will not overlap.

Concurrent Design Models Wrap-Up

There often aren’t clear, discrete steps to follow when developing a task or data decomposition
solution. When considering how to answer the design element questions for your chosen
design model, some of the decisions you make will be based on answers to questions that follow
and answers that have come before. I hope you got that sense from the discussion of each
example given. Even though I had to write down the questions sequentially, you may need to
consider more than one thing at a time to devise an efficient concurrent solution.

DESIGN FACTOR SCORECARD
For most of the algorithms that are discussed and analyzed in Chapters 6 through 10, I will include
a “Design Factor Scorecard” to discuss the concurrent algorithm and its implementation on four key
factors. These factors are taken from Mattson’s Patterns for Parallel Programming where they are
used as criteria concurrent programmers need to keep in mind when designing and implementing
parallel applications through the parallel programming patterns that are presented. For our
purposes, I’ve redefined these terms slightly from how Mattson et al. originally used them. My
interpretations of these terms are given shortly.

It is my contention that programmers of concurrent algorithms should keep each of these factors in
mind, along with their relative importance to each other and the tradeoffs between stressing one
factor over another when designing and implementing concurrent algorithms. The merits and
tradeoffs possible for the algorithms and code given in later chapters will also be presented in the
Design Factor Scorecard section after the descriptions of each algorithm presented.

Efficiency
Your concurrent applications must run quickly and make good use of processing resources.
With regard to a concurrent algorithm, efficiency will examine the overhead computations that

D e s i g n M o d e l s f o r C o n c u r r e n t A l g o r i t h m s 41

you must add to ensure a correct execution, how alternative arrangements of threads or
organizations of tasks might work better or worse, and what other problems there could be
with the performance of the threaded application.

Simplicity
The simpler your concurrent algorithms are, the easier they will be to develop, debug, verify,
and maintain. In terms of concurrent code based on a serial version, discussions of simplicity
will focus on how much extra code you have to add to achieve a concurrent solution and how
much of the original structure of the serial algorithm remains.

Portability
One of the goals of this book is to be as agnostic as possible with regard to available threading
models and which models are used to implement the solution algorithms presented. Portability
discussions will examine the tradeoffs that you could encounter if you used a different
threading model from the one used in this text. While this book is primarily dedicated to the
design and exploration of multithreaded codes, one of the options discussed under portability
will be distributed-memory variations of the algorithms.

Scalability
Because the number of cores will only increase as time passes, your concurrent applications
should be effective on a wide range of numbers of threads and cores, and sizes of data sets.
Scalability refers to what you should expect with regard to how a given concurrent algorithm
will behave with changes in the number of cores or size of data sets.

My Two Cents’ Worth on the Factors

For me, scalability is the most important of these four factors, with efficiency a close second. This
means that I will typically try to design a concurrent algorithm that will maintain its level of
performance as the number of cores and threads increases to the detriment of a simpler or more
portable algorithm. In order to gain that scalability, the algorithm and its implementation must be
efficient, so that is my secondary goal.

There have been many times when the scalability of a concurrent application I’ve written has peaked
and flattened out. This was usually due to the requirements of the algorithm and the paraphernalia
provided by the threading model being used. In these cases, I would ask myself if it is worth the
extra work to try to discover an alternative (which may not exist) that might scale better, or to rewrite
the whole thing in terms of a different threading or design model. These are some of the tradeoffs
you face when tackling concurrent algorithms.

What’s Not Parallel
In the chapters and pages that follow, we’re going to explore quite a few things that can be
executed concurrently. Before we get to those, though, I want to impress upon you that not

42 C H A P T E R 2 :   C O N C U R R E N T O R N O T C O N C U R R E N T ?

everything can be executed in parallel. I don’t want you wasting time beating your head against
the wall, endlessly poring over this book and others on parallel algorithms, or pestering friends
and colleagues (or me) with phone calls in the wee hours of the morning trying to enlist them
in your search for a parallel solution, especially when there isn’t one.

N O T E
One of the more famous illustrations of a situation that cannot be made parallel is cited in

Fred Brooks’s 1995 book, The Mythical Man-Month: Essays on Software Engineering

(Addison-Wesley Professional). The nine-month gestation period for a human is a serial

process—you can’t get a baby in one month by assigning nine women to the job.

On the other hand, if you wanted to raise a baseball team of players from cradle to Wrigley

Field in the shortest amount of time, you could employ 9 women (10 if you want a designated

hitter). This would give you a newborn starting lineup after nine months. Asking one woman

to do all the work would require about nine years, barring twins and such, and the pitcher

(firstborn) would be starting her Little League career when the right fielder (ninth-born) was

just arriving.

Algorithms with State

The first example of code that cannot be executed concurrently is algorithms, functions, or
procedures that contain a state. That is, something kept around from one execution to the next.
For example, the seed to a random number generator or the file pointer for I/O would be
considered state. Algorithms with state cannot be made directly concurrent, and whenever
you encounter such code, a red flag should go up when you are considering concurrency.
However, you may be able to take steps to render the code thread-safe, which may be sufficient.

You can make state-filled code thread-safe by adding some form of synchronization or writing
the code to be reentrant (i.e., it can be reentered without detrimental side effects while it is
already running). The former option will serialize all concurrent executions of the
synchronized code (and add unnecessary overhead when not called concurrently), while the
latter option may not be possible if the update of global variables is part of the code.

If the variable(s) holding the state does not have to be shared between threads, you can use
TLS to overcome this dependence. Using TLS, each thread would have a separate copy of the
state variable(s) (accessed in exactly the same way across all threads) to ensure there are no
data races on the variable(s). Thus, each thread can have a different random number seed and
use the same code to generate a separate stream of numbers that will not interfere with any
other thread’s seed.

W h a t ’ s N o t P a r a l l e l 43

Recurrences

Recurrence relations within loops feed information forward from one iteration to the next.
Prime examples of this are time-stepping loops and convergence loops. No matter how many
tea leaves we read, tarot cards we consult, or Magic Eight Ball apps we write, we can’t parse
out future time steps to multiple threads for concurrent execution.

A simple code example of a recurrence is given in Example 2-4. The recurrence shown is the
read access of the a[i-1] element that was computed in the previous iteration.

EXAMPLE 2-4. Recurrence relation on array access

for (i = 1; i < N; i++)
 a[i] = a[i-1] + b[i];

Unfortunately, most recurrences cannot be made concurrent. Prefix sum is a special case of a
recurrence that can be made to run concurrently (see Chapter 6 for more details on concurrent
algorithms for prefix scan).

If you’ve got a recurrence relationship that is a hotspot in your code, look for a point “higher”
in the call tree that would include execution of the recurrence. Thread there, where possible.

Induction Variables

Induction variables are variables that are incremented on each trip through a loop. Most likely,
these are index variables that do not have a one-to-one relation with the value of the loop
iterator variable. Example 2-5 shows a code segment with two induction variables, i1 and i2.

EXAMPLE 2-5. Induction variables

i1 = 4;
i2 = 0;
for (k = 1; k < N; k++) {
 B[i1++] = function1(k,q,r);
 i2 += k;
 A[i2] = function2(k,r,q);
}

As this code stands, even if the calls to function1() and function2() are independent, there’s no
way to transform this code for concurrency without a few radical alterations to the serial
source. Specifically, you would need to replace the array index increment expressions with a
calculation based solely on the value of the loop iterator variable.

Without much strain on your brain, I’m sure you can see that you could rewrite the first
statement in the loop as shown in Example 2-6.

EXAMPLE 2-6. Solution for first induction variable increment

B[k+4] = function1(k,q,r);

44 C H A P T E R 2 :   C O N C U R R E N T O R N O T C O N C U R R E N T ?

The second is a bit trickier. Take a moment to see whether you can figure it out on your own.
I’ve put the solution at the end of the next paragraph.

A worse case than the code shown in Example 2-5 are induction variables that have a
conditional increment. As an example, say you want to search through a list and copy out all
items that have some property, such as all recording artists who released more albums than
Pink Floyd. We’ll assume that the list is implemented with some random access data structure;
otherwise, if we use a linked or pointer-based data structure, we’ve already got problems about
how to efficiently access data concurrently. Now, the loop index variable is running through
the full set of data items and the induction variable is only incrementing when we find an item
that matches our criterion in order to store it in a second array (indexed by the induction
variable). There is no closed-form relation between the value of the loop index and the value
of the induction variable.

Did you figure out how to set up the second induction variable form from Example 2-5? It is
simply the sum of the integers from 1 up to the current value of k. Thus, you can use the code
in Example 2-7 in a concurrent version of the loop.

EXAMPLE 2-7. Solution for second induction variable increment

i2 = (k*k + k)/2;
A[i2] = function2(k,r,q);

This is a contrived example, of course. Your situations may not be so neat and clean, though
I hope they are.

Reduction

Reductions take a collection (typically an array) of data and reduce it to a single scalar value
through some combining operation. To remove this dependency, the operation must be both
associative and commutative, such as addition, multiplication, or some logical operations. The
loop in the code fragment shown in Example 2-8 will find the sum of all elements of the c
array as well as the largest (maximum) element in the array.

EXAMPLE 2-8. Reduction code

sum = 0;
big = c[0];
for (i = 0; i < N; i++) {
 sum += c[i];
 big = (c[i] > big ? c[i] : big); // maximum element
}

At first glance, the loop cannot be made to execute concurrently. Each element, in turn, is
added to the running total and compared to the largest element found so far, replacing that
largest found element as needed. This is all done in the order of the incrementing index variable
i. However, notice that the results would be exactly the same (within limits of rounding and

W h a t ’ s N o t P a r a l l e l 45

truncation) if the loop were run in reverse order (I mentioned this idea of running a loop in
reverse as a good initial test that the loop may be capable of concurrent execution earlier in
this chapter).

Taking advantage of the associativity of the operator(s) involved will allow you to create a
concurrent version of the reduction algorithm. Divide the loop iterations among the threads
to be used and simply compute partial results (sum and big in the preceding example) in local
storage. Next, combine each partial result into a global result, taking care to synchronize access
to the shared variables. Of course, if you’re threading your loop with OpenMP or Intel TBB,
you just need to make use of the reduction clause or parallel_reduce algorithm.

Loop-Carried Dependence

The final example of code that poses a problem to our efforts to write concurrent applications
is known as loop-carried dependence. This dependence occurs when results of some previous
iteration are used in the current iteration. Typically, this situation will be evidenced by
references to the same array element on both the left- and righthand sides of assignments and
a backward reference in some righthand side use of the array element. Obviously, the iterations
of such loops are not completely independent. Example 2-9 shows a code fragment that
updates corresponding elements of the a and b arrays, but the update of a elements relies on
previously updated elements from the b array.

EXAMPLE 2-9. Loop-carried dependence code

for (k = 5; k < N; k++) {
 b[k] = DoSomething(k);
 a[k] = b[k-5] + MoreStuff(k);
}

Dividing such loop iterations into tasks presents the problem of requiring extra synchronization
to ensure that the backward references have been computed before they are used in
computation of the current iteration. Recurrence is a special case of a loop-carried dependence
where the backward reference is the immediate previous iteration. There is no way to
efficiently execute such loop iterations concurrently, since waiting for the backward references
to be resolved can require a hefty amount of synchronization.

For example, if your backward reference spans five iterations (as in Example 2-9), you can
divide up the loop iterations into chunks with five iterations in each chunk. Once the first
iteration of the first chunk has completed, the first iteration in the second chunk can start,
since the dependence of the first iteration of the second chunk (iteration #6) has been satisfied.
You can daisy-chain loop chunks and threads like this, but it will all need some major code
modifications and synchronization to ensure that all prerequisite dependences have been
satisfied before execution can start on each separate iteration.

46 C H A P T E R 2 :   C O N C U R R E N T O R N O T C O N C U R R E N T ?

Not-so-typical loop-carried dependence

The loop in the code fragment given in Example 2-10 cannot be made parallel because wrap is
carried from one iteration to the next. This is loop-carried dependence that doesn’t follow the
typical format involving obvious backward references, since the backward references are
“hidden” in the wrap variable.

EXAMPLE 2-10. Atypical loop-carried dependence

wrap = a[0] * b[0];
for (i = 1; i < N; i++) {
 c[i] = wrap;
 wrap = a[i] * b[i];
 d[i] = 2 * wrap;
}

Fortunately, you can restructure this simple case to define wrap before use in each iteration and
create a loop whose iterations can be executed concurrently. This is possible because you can
assign the proper value of wrap based solely on the value of the loop iterator variable.
Example 2-11 shows the results of this code restructuring.

EXAMPLE 2-11. Modified loop-carried dependence

for (i = 1; i < N; i++) {
 wrap = a[i-1] * b[i-1];
 c[i] = wrap;
 wrap = a[i] * b[i];
 d[i] = 2 * wrap;
}

Disregarding the code used to implement the loop repetition (initializing, incrementing, and
testing the loop iterator), you will notice that the modified code is now executing 4N
statements, as opposed to the 3N+1 needed in Example 2-10.

Rewriting an existing algorithm to something less efficient in order to get a better chance of
concurrency may be necessary. Don’t use something that is too far afield of the original,
though. Less efficient serial algorithms will tend to add overhead (as seen when comparing the
number of statements in the loop bodies in the previous examples).

W h a t ’ s N o t P a r a l l e l 47

C H A P T E R T H R E E

Proving Correctness and
Measuring Performance

THIS CHAPTER TAKES A LOOK AT TOPICS RELATED TO THE FINAL TWO STEPS of the threading
methodology. The first is knowing when your concurrent algorithms will run correctly or at
least have a good idea that you’ve done a good job of designing an error-free concurrent
algorithm. The second topic covers some of the ways you can measure how well your
concurrent code is executing in parallel. Finally, I’ve put in a little history review (don’t
worry—it’s short, it’s related to the topic of this book, and it never hurts to know where you’ve
been to have a clue about where you might be going).

Verification of Parallel Algorithms
In his 2006 book Principles of Concurrent and Distributed Programming, Second Edition
(Addison-Wesley), M. Ben-Ari defines an abstraction for formally verifying the correctness and
other properties of concurrent algorithms. Unlike other theoretical abstractions in computer
science that deal with hardware (e.g., PRAM), Ben-Ari’s abstraction deals with how concurrent
programs execute. I don’t want to get into all the details and justifications for this abstraction
here. I recommend that you read Ben-Ari’s book for that and for another good resource in
concurrent algorithm design. I want to cover just enough for you to understand the principles
and the basic idea of the concurrency abstraction and how to prove concurrent algorithms are
correct.

For those of you who haven’t immediately curled up into a fetal position or flopped onto the
floor kicking and screaming at the thought of formal proofs of algorithms (and for those of you
who did but have now picked the book up again), let me assure you that I consider this a vital
part of concurrent algorithm design and it’s probably not as bad as you think. The more time
you spend creating correct concurrent algorithms from the get-go, the less time you will spend
chasing down errors that only show up on those Thursdays when the dates are prime numbers.
This is a great example of the phrase, “An ounce of prevention equals a pound of cure.”

Some potential concurrency errors are going to be obvious and you can avoid them easily.
Other errors are going to be subtler and may only show up under very rare and very particular
circumstances. Do you need to deal with those rare “corner” cases? Yes, you do. Having a
familiarity with Ben-Ari’s methods and practicing them whenever you are designing
concurrent algorithms will sharpen your skills to identify the potential corner cases that your
colleagues overlook. Besides, I make use of Ben-Ari’s technique throughout the later chapters
of this book and if you haven’t read the following sections, you won’t know what I’m talking
about.

The first part of the concurrent abstraction is that programs are the execution of atomic
statements. An atomic statement is one that cannot be divided into smaller instructions or that
cannot be interrupted until the statement is completed. The bottom line is that there is some
granularity of executable code at which even the operating system is unable to interrupt and
must wait before it can affect the process that is executing that atomic statement. For purposes
of the concurrent abstraction, there are different levels of atomicity we might choose to work

50 C H A P T E R 3 :   P R O V I N G C O R R E C T N E S S A N D M E A S U R I N G P E R F O R M A N C E

with. These range from individual machine code instructions to assembly language code to
individual source lines of a high-level language. We can choose the level of atomic execution
that makes the most sense, is easiest to work with, and fits with the algorithm we are
abstracting. In most cases you can stay at the individual source-line level. There won’t be many
situations that require you to consider the algorithm that has been broken down to the
assembly-language level.

The next part of the concurrent abstraction is to understand that concurrent programs are
interleavings of atomic statements from two or more threads. I find it easier to assume my
concurrent algorithm is executing on a single core. That way, I know the operating system will
be swapping the threads in and out of the processor in some interleaved fashion. Plus, dealing
with the temporal relationship of two threads executing in parallel on different cores quickly
becomes a headache whose cost is nowhere near the value of the payoff methodology.

Operating systems schedule threads in a nondeterministic way, so we cannot predict the exact
execution sequence of the atomic statements of multiple threads for any execution, nor can
we guarantee that the same order seen from one run will be repeated in the next run or ever
again. Thus, to prove or verify any desirable properties of a concurrent algorithm (such as
correctness), we must show that the desirable property holds for all interleavings of atomic
statements from two or more threads.

If you pause a moment and think about this, you’ll realize that you will be confronted with a
geometrically growing number of interleavings that must be verified. For example, if you have
two threads, T0 and T1, each with two statements, s1 and s2, there are six different
interleavings of these atomic statements. Figure 3-1 shows the interleavings of these four
atomic statements.

T0 s1

T0 s2

T0 atomic
statements

T1 s1

T1 s2

T0 s1

T0 s2

T1 s1

T1 s2

T0 s1

T1 s1

T0 s2

T1 s2

T0 s1

T1 s1

T1 s2

T0 s2

T1 s1

T0 s1

T0 s2

T1 s2

T1 s1

T0 s1

T1 s2

T0 s2

T1 s1

T1 s2

T0 s1

T0 s2

T1 atomic
statements

Interleavings of 2 atomic statements from two threads

FIGURE 3-1. Interleaving two statements within each of two threads

With two threads, three statements per thread yields 20 distinct interleavings, and four
statements each would require verification of 70 interleavings. And this is with only two
threads. Imagine the number of interleavings using three, four, or eight threads. What is a
programmer to do?

Typically, you will find that of the many different possible interleavings, only a few are relevant
in proving that the algorithm under consideration has the desired properties. In the set of
interleavings enumerated in Figure 3-1, it may be that we only have to be concerned in those

V e r i f i c a t i o n o f P a r a l l e l A l g o r i t h m s 51

cases where T0 s1 immediately precedes T1 s2. There is only one case where this happens (fifth
from the left). You will need to have good reasons for not considering any interleaving that
you do not formally verify, of course. You cannot bypass them with some hand-waving, and
you can’t just sweep them under the carpet because they seem too numerous or difficult.

The final part of the concurrent abstraction is to assume that statements from a thread will
eventually be selected for inclusion in an interleaving. This is the fairness property of the
abstraction. When running multiple processes, every process is given a quantum of time by
the operating system to execute statements on the processor. Priority of execution associated
with processes may keep a process from getting into the CPU as frequently as many of the
others in the system, but the operating system is fair and will give some sliver of time to each
process, eventually. Thus, the abstraction enforces the idea that threads will be allowed to
proceed at some point, even if it is for a single atomic statement. While the current status of
the computation may not allow any thread to do any useful computation, as in the case where
the state of other threads and values may prevent a thread from breaking out of a spin-wait
loop, that will be a property of the algorithm, not a defect in the concurrent abstraction being
used.

To recap, here are the four parts of Ben-Ari’s concurrent abstraction that we can use to verify
that concurrent algorithms have desirable properties:

• Programs are the execution of atomic statements.

• Concurrent programs are the interleavings of atomic statements from two or more threads.

• All possible interleavings of atomic statements must be shown to retain whatever property
we are hoping to verify within a concurrent algorithm.

• No thread’s statements may be (unfairly) excluded from any arbitrary interleaving.

Ben-Ari goes into much more formal depth in justifying the properties of his abstraction. He
shows how you can use state diagrams and (interleaving) scenarios as tools to formally verify
the properties of concurrent algorithms. Even if you’re not into formal proofs of algorithms, I
recommend reading the chapters from Ben-Ari’s text (see if you can get one from your local
library if you don’t want to shell out the bucks for your own copy) to get a more complete idea
about verifying concurrent algorithms.

The next sections of this chapter will develop a solution to a well-known problem in concurrent
programming to show you how you can use this concurrent abstraction. I will make several
attempts at writing a valid solution, but as you’ll see, each will be missing some of the required
properties. I may be playing somewhat fast and loose with the granularity of what constitutes
an atomic statement in the analyses of each algorithmic attempt. Still, there should be enough
detail and rigor to convince a knowledgeable person that the algorithm attempts have the
potential to fail for the reasons cited and that the final solution algorithm will work in all
possible cases.

52 C H A P T E R 3 :   P R O V I N G C O R R E C T N E S S A N D M E A S U R I N G P E R F O R M A N C E

Example: The Critical Section Problem
A critical section is a portion of code from a concurrent algorithm where shared variables are
accessed and an update of these variables is involved. Thus, to avoid a data race on the shared
variables, all accesses, read or write, must be restricted to allow only a single thread to execute
code in the critical sections at a time. The Critical Section Problem is an exercise to develop a
means for mutual exclusion that doesn’t use any synchronization objects or primitives that
might be defined within a threading model. I prefer the term critical region to denote such
regions of code, especially since there is a Windows threading object called CRITICAL_SECTION
that can be used for enforcing mutual exclusion in a critical region. I like to avoid confusion
between terms whenever I can. While I use the classic name for the problem, I will refer to
these code segments as critical regions for the rest of the book.

Proposed solutions to the problem must prove that the following two properties hold in all
circumstances:

1. The code enforces mutual exclusion. Threads are disallowed from entering the critical
region when another thread is occupying the critical region. Plus, if there are multiple
concurrent requests to enter the critical region and no other thread is currently executing
within the region, only one requesting thread must be allowed to enter the critical region.

2. If a thread is not executing within the critical region, that thread cannot prevent another
thread seeking entry from entering the region.

What follows is a step-by-step development of successive algorithms to a solution known as
Dekker’s Algorithm. Ben-Ari devotes a whole chapter to demonstrate the use of his
concurrency abstraction by reworking an initial attempt to derive Dekker’s Algorithm. There
are some differences between the attempted solution algorithms he describes and the ones I
give here.

I will only consider the case with two threads competing for the critical region, since Dekker’s
Algorithm is defined only for two threads and it keeps things simple. One thread will be
executing the ThreadZero() function, and the other will execute the ThreadOne() function. In
my analysis of the examples, I shall refer to these threads as T0 and T1, respectively.

In the solution pseudocode examples, the critical regions will be represented as calls to the
functions CriticalRegionZero and CriticalRegionOne. I shall assume that both regions access the
same shared variables and must be executed in a mutually exclusive way. When a thread is
not within the critical region, there are other computations to be done (OtherStuffZero,
OtherStuffOne).

The purpose of this exercise is not to develop a solution to the Critical Section Problem. We
can easily employ an appropriate synchronization object to limit the number of threads
entering a critical region of our code. The development of code that eventually leads to Dekker’s
Algorithm is used to illustrate M. Ben-Ari’s methods of verifying the correctness of concurrent
algorithms.

E x a m p l e : T h e C r i t i c a l S e c t i o n P r o b l e m 53

First Attempt

Example 3-1 shows the first attempt at an algorithm that will enforce mutual exclusion on
entering a critical region.

EXAMPLE 3-1. First attempt

int threadNumber = 0;

void ThreadZero()
{
 while (TRUE) do {
 while (threadNumber == 1) do {} //spin-wait
 CriticalRegionZero;
 threadNumber = 1;
 OtherStuffZero;
 }
}

void ThreadOne()
{
 while (TRUE) do {
 while (threadNumber == 0) do {} //spin-wait
 CriticalRegionOne;
 threadNumber = 0;
 OtherStuffOne;
 }
}

The first attempt makes use of a global variable, threadNumber, to announce which thread may
enter the critical region. The value of this global is initialized to 0 to allow T0 first access to the
critical region. Before entering the region, a thread first checks to see whether it is allowed to
enter, based on the value stored in threadNumber. If it is, the thread proceeds into the critical
region and, upon exit, updates the threadNumber variable with the value that allows the other
thread entry. If the value of threadNumber doesn’t match, the thread enters a spin-wait loop
until the other thread has executed the critical region and changed the value of threadNumber.

Assuming a single core with two threads that are swapped into the processor, we can see that
an execution trace for this example could proceed as shown here:

1. T1 arrives at while loop.

2. T1 waits, since threadNumber == 0.

3. T0 arrives at while loop.

4. T0 proceeds, since threadNumber == 0.

5. T0 enters critical region.

6. T0 exits critical region and sets threadNumber = 1.

7. T1 enters critical region.

54 C H A P T E R 3 :   P R O V I N G C O R R E C T N E S S A N D M E A S U R I N G P E R F O R M A N C E

Here’s your first chance to try out an interleaving on your own. What happens if T0 starts
execution first on the CPU and enters the critical region? Will T1 gain access to the region while
T0 is executing there? Close the book (be sure to mark your place), go get a snack or something
to drink, and ponder that situation before returning to see my analysis.

Welcome back.

If T0 starts first, even if it only executes the start of the while loop before T1 is allowed to execute
in the processor, T1 will hit the spin-wait loop. In fact, this is the scenario for any interleaving
that starts with T0 and T1 is allowed to execute before T0 has set threadNumber. After the shared
variable is set, T1 will be given access to the critical region and T0 will be blocked.

Mutual exclusion is guaranteed. Only one thread at a time is allowed into the critical region,
while the other thread will not be allowed into the region until the thread already executing
within the region has finished and reset the threadNumber flag to the appropriate value.

What about the case where T1 enters the critical region, does the assigned computation, exits
the critical region, and then needs to get back into the critical region before T0 has had the
chance to make a pass through the critical region? T1 will not be able to reenter the critical
region until T0 has completed the execution of OtherStuffZero, gone through the critical region,
and reset the threadNumber flag. We now have the case where one thread that is not in the
critical region can prevent another thread from entering. This violates the second property a
correct solution must have.

In fact, the circumstances created by the simple solution proposed in Example 3-1 force a
lockstep alternation of allowing threads to enter and exit the critical region. Any thread that
attempts to deviate from that rigid alternation is stymied and must execute the spin-wait until
the other thread has changed the value of the threadNumber flag. Compounding this problem is
the possibility of one thread terminating (whether by design, by accident, or by foul play)
before the other. If the surviving thread attempts to enter the critical region without the dead
thread having a chance to change the value of the threadNumber flag, this will create a deadlock
on the surviving thread.

This is not an acceptable state of affairs. Let’s see if we can do better in the next attempt.

Second Attempt

To get around the problem of the lockstep execution requirement of the first proposed solution
to the Critical Section Problem, the second solution uses a global flag, one per thread, to denote
when a thread is executing within the critical region. Example 3-2 shows the pseudocode for
the second attempt.

EXAMPLE 3-2. Second attempt

int Thread0inside = 0;
int Thread1inside = 0;

E x a m p l e : T h e C r i t i c a l S e c t i o n P r o b l e m 55

void ThreadZero()
{
 while (TRUE) do {
 while (Thread1inside) do {} // spin-wait
 Thread0inside = 1;
 CriticalRegionZero;
 Thread0inside = 0;
 OtherStuffZero;
 }
}

void ThreadOne()
{
 while (TRUE) do {
 while (Thread0inside) do {}
 Thread1inside = 1;
 CriticalRegionOne;
 Thread1inside = 0;
 OtherStuffOne;
 }
}

As in the code for the first attempt, two threads each execute one of the two functions given.
The two status flags, Thread0inside and Thread1inside, indicate when the corresponding thread
is executing within the critical region. Before attempting to enter the critical region, a thread
checks on the status of the other thread. If the status flag indicates the other thread is already
within the critical region, the thread attempting entry executes a spin-wait until the thread
within the critical region exits and resets its status flag. If the other thread’s status flag doesn’t
indicate that the thread is running code in the critical region, the thread attempting to enter
the critical region will set its own status flag, execute code in the critical region, and then reset
the status flag to show that it is no longer inside the critical region.

This version solves the lockstep problem: T1 can enter and exit the critical region any number
of times unless T0 is already in the critical region. If a thread is within the critical region, its
status flag will indicate this fact and the other thread attempting to enter will be kept out until
the thread in the region exits and resets its status flag.

While mutual exclusion is enforced if one thread is already in the critical region, a problem
worse than the possibility of starvation is that this algorithm cannot guarantee mutual
exclusion in the general case. Consider the following interleaving of executions between the
two threads, T0 and T1, which demonstrates how two threads can be allowed to enter into the
critical region at the same time:

1. T0 tests Thread1inside in while conditional.

2. T0 finds Thread1inside == 0 (conditional is FALSE).

3. T1 tests Thread0inside in while conditional.

4. T1 finds Thread0inside == 0 (conditional is FALSE).

5. T0 enters critical region.

56 C H A P T E R 3 :   P R O V I N G C O R R E C T N E S S A N D M E A S U R I N G P E R F O R M A N C E

6. T1 enters critical region.

This interleaving forces us to conclude that the second proposed solution will not keep two
threads out of the critical region. One obvious fix is to disallow a thread from accessing the
while loop conditional evaluation whenever the other thread is running the while loop test
within its own function.

Third Attempt

The previous attempt used what I would call “selfish” threads. Before entering the critical
region, a thread sets its status flag announcing that it is proceeding into the critical region. The
only cooperation between the threads is checking the status of the other selfish thread before
barreling into the critical region. The third attempt uses more genteel threads that take into
account the other thread’s intention to enter the critical region. Example 3-3 shows the
pseudocode for the third attempt.

EXAMPLE 3-3. Third attempt

int Thread0WantsToEnter = 0;
int Thread1WantsToEnter = 0;

void ThreadZero()
{
 while (TRUE) do {
 Thread0WantsToEnter = 1;
 while (Thread1WantsToEnter) do {} // spin-wait
 CriticalRegionZero;
 Thread0WantsToEnter = 0;
 OtherStuffZero;
 }
}

void ThreadOne()
{
 while (TRUE) do {
 Thread1WantsToEnter = 1;
 while (Thread0WantsToEnter) do {}
 CriticalRegionOne;
 Thread1WantsToEnter = 0;
 OtherStuffOne;
 }
}

In this attempt, each thread declares the desire to enter the critical region by setting the
appropriate desire flag. However, before proceeding into the critical region, the thread first
checks on whether the other thread wants to enter the critical region. If so, the first thread will
enter a spin-wait loop until the second thread has executed the critical region—satisfying the
desire to enter the region—and resets its desire flag. Otherwise, finding that the other thread

E x a m p l e : T h e C r i t i c a l S e c t i o n P r o b l e m 57

is not interested in entering the critical region, a thread will proceed into the critical region
and reset its desire flag after exiting the region.

Hold your horses there, buckaroo! Isn’t this just the second attempt algorithm with a different
name for the status flag? No, but I’m not surprised if you thought that. Go back to
Example 3-2 and look closely. The difference between the second and third attempts is the
order of the setting of a thread’s status flag and the testing of the other thread’s flag. In the
second attempt, the spin-wait while test came before the setting of a thread’s flag; in the third
attempt, the status flag is set before the spin-wait while conditional checks the other thread’s
flag.

To illustrate how this algorithm is intended to execute, let’s assume we have T1 executing
OtherStuffOne. When T0 wishes to enter the critical region, it first sets Thread0WantsToEnter to 1
and then examines the value of Thread1WantsToEnter to find that T1 has not announced any
desire to enter the critical region. T0 will proceed into the critical region. Should T1 finish with
the other computations and require access to the critical region, it will set
Thread1WantsToEnter to 1 and then examine Thread0WantsToEnter, which it finds to also have the
value 1. This will put T1 into the spin-wait loop until T0 exits the critical region and resets
Thread0WantsToEnter to 0.

N O T E
The desire flag will be set to 1 not only when a thread wishes to enter the critical region, but

also while the thread is executing in the critical region. Since threads cannot know whether

a desire flag is merely the announcement of intent or denotes that the other thread is

currently executing in the critical region, they must assume that it means the latter and that

the other thread is executing in the critical region.

Mutual exclusion is enforced when a thread is in the critical region, and threads are free to
enter and leave the critical region in any order that their execution will take them. As you
should have guessed by now, there is a problem and I hope you’ve already seen it. If not, the
following interleaving shows how this attempt can run into trouble:

1. T0 sets Thread0WantsToEnter = 1.

2. T1 sets Thread1WantsToEnter = 1.

3. T0 tests Thread1WantsToEnter in while conditional.

4. T0 finds Thread1WantsToEnter == 1 (conditional is TRUE).

5. T0 executes spin-wait.

6. T1 tests Thread0WantsToEnter in while conditional.

7. T1 finds Thread0WantsToEnter == 1 (conditional is TRUE).

8. T1 executes spin-wait.

58 C H A P T E R 3 :   P R O V I N G C O R R E C T N E S S A N D M E A S U R I N G P E R F O R M A N C E

This situation reminds me of the two gophers, Mac and Tosh, from the Warner Brothers
cartoon shorts of the 1940s and ’50s. These rodents were overly polite to everyone and to each
other. For example, whenever they both wanted to pass through a door, they would take turns
trying to get the other to precede them. This was done by alternately cajoling the other with
phrases like, “After you,” and, “No, I must insist, you first.”

The threads T0 and T1 can both state the desire to enter the critical region before testing the
intentions of the other thread. In that case, both threads will go into their spin-wait loops and
never have the chance to reset the desire flag that will release the other thread. This is a classic
deadlock situation. Each thread is waiting for an event (the reset of the desire flag of the other
thread) that will never occur.

To avoid a deadlock situation, we must deny one of the four necessary conditions of a deadlock
(see the sidebar “Four Necessary Conditions Required to Allow Deadlock”) from occurring. To
solve this problem, we need to find a way to break out of the spin-wait loop that caused the
problem in the first place. The fourth attempt at a solution will take this approach.

FOUR NECESSARY CONDITIONS REQUIRED TO ALLOW DEADLOCK
To have the potential for deadlock between two or more threads and the set of resources that are
required by each, four conditions must be met. In a paper titled, “Sequencing tasks in multiprocess
systems to avoid deadlocks” (in Conference Record of 1970 Eleventh Annual Symposium on Switching
and Automata Theory), E. G. Coffman, Jr. and A. Shoshani first enumerated these four conditions as
follows:

Mutual exclusion condition
Individual resources are either available or they are held by no more than one thread at a time.

Hold and wait condition
Threads that are already holding some resources may attempt to hold new resources.

No preemption condition
Once a thread is holding a resource, that resource can only be removed when the holding thread
voluntarily releases the resource.

Circular wait condition
A circular chain of threads requesting resources that are held by the next thread in the chain
can exist.

To prevent the possibility of deadlock from occurring, one of these conditions must not be allowed
to exist. There are many different ways to prevent one or more of these conditions. A text on operating
systems theory should have some discussion about deadlock and how you can prevent it.

E x a m p l e : T h e C r i t i c a l S e c t i o n P r o b l e m 59

Fourth Attempt

The fourth attempt has the same polite threads from the previous algorithm, but it removes
the “hold and wait” condition of deadlock that was plaguing the third attempt. Example 3-4
shows the pseudocode for two threads with the deadlock breaking modifications.

EXAMPLE 3-4. Fourth attempt

int Thread0WantsToEnter = 0;
int Thread1WantsToEnter = 0;

void ThreadZero()
{
 while (TRUE) do {
 Thread0WantsToEnter = 1;
 while (Thread1WantsToEnter) do { // not quite a spin-wait
 Thread0WantsToEnter = 0;
 delay(someRandomCycles);
 Thread0WantsToEnter = 1;
 }
 CriticalRegionZero;
 Thread0WantsToEnter = 0;
 OtherStuffZero;
 }
}

void ThreadOne()
{
 while (TRUE) do {
 Thread1WantsToEnter = 1;
 while (Thread0WantsToEnter) do {
 Thread1WantsToEnter = 0;
 delay(someRandomCycles);
 Thread1WantsToEnter = 1;
 }
 CriticalRegionOne;
 Thread1WantsToEnter = 0;
 OtherStuffOne;
 }
}

As in the previous algorithm, when a thread seeks to enter the critical region, it sets the
associated desire flag and then checks the status of the desire flag for the other thread. If that
other thread does not wish access to the critical region, the original thread proceeds. However,
if the other thread does want to enter the critical region (or is in the critical region already),
the original thread will enter the while loop. This does not simply perform a spin-wait as we
have seen in all the attempts so far. Instead, an iteration of the while loop resets the thread’s
desire flag, delays the thread for some random number of cycles, sets the desire flag to 1, and
retests the status of the other thread’s desire flag in the while condition.

60 C H A P T E R 3 :   P R O V I N G C O R R E C T N E S S A N D M E A S U R I N G P E R F O R M A N C E

With this modification, if the two threads set their associated desire flags and then check on
the status of the other flag, the threads will not wait in deadlock. One of the threads should be
given a shorter delay time before setting its desire flag and finding the other (still delayed)
thread not yet wanting to enter the critical region. Of course, there is the chance that the
random delay will be exactly the same for each thread each time the thread is delayed and we
would be back in the same situation as the third attempt. The probability of such an event
occurring would be about the same as two independent and fair roulette wheels hitting exactly
the same sequence of results each time they are spun.

As with the third attempt, mutual exclusion is enforced when a thread is in the critical region
and threads are free to enter and leave the critical region in any order that their executions
will take them. I avoid the circumstances leading to deadlock using a random arbitration of
which thread should be allowed to proceed into the critical region. Still, this variation contains
a problem that is detrimental to the execution of threads within this algorithm. The following
interleaving of thread executions demonstrates this potential dilemma:

1. T0 enters critical region.

2. T1 sets Thread1WantsToEnter = 1.

3. T1 finds T0 in critical region.

4. T1 resets Thread1WantsToEnter = 0, and delays.

5. T0 exits critical region.

6. T0 quickly performs OtherStuffZero.

7. T0 gains access to critical region.

8. T1 sets Thread1WantsToEnter = 1.

9. T1 tests Thread0WantsToEnter in while conditional and finds T0 in critical region.

10. T1 resets Thread1WantsToEnter = 0 and delays.

11. T0 exits critical region.

12. T0 quickly performs OtherStuffZero.

13. T0 gains access to critical region.

Are you starting to get the hang of this interleaving analysis? Before you saw my interleaving,
did you figure out that it is possible for one thread to keep the other out of the critical region
indefinitely? Such behavior is known as starvation. This interleaving can go on indefinitely,
stranding the unlucky T1 in a perpetual state of starvation.

Does this violate the required properties of a correct solution? Not really. This starvation and
mistreatment of T1 is not the fault of T0, but is a direct result of the adverse scheduling by the
operating system. While I would agree that such starvation of one thread by this algorithm is
extremely unlikely, it is still possible, and it is a situation that we should try to avoid if at all
possible.

E x a m p l e : T h e C r i t i c a l S e c t i o n P r o b l e m 61

When analyzing threaded algorithms and the correctness of the interactions between threads
within that algorithm, you cannot assume anything about execution speed. Multiple processors
within a symmetric multiprocessor system may not all have the same clock speed, and future
multicore processors may not contain homogeneous core elements within the same package.
Not to mention that the amount of computation assigned to a thread can be different from that
given to another thread. Thus, you must examine all possible execution interleavings of
threads in order to demonstrate that you have a correct concurrent algorithm.

Dekker’s Algorithm

Our final attempt is known as Dekker’s Algorithm. Rather than relying on the polite nature of
threads or a capricious random function to break the tie when two threads wish to enter the
critical region, the algorithm bestows a “favored” status on the thread to be allowed entry and
acts as a tiebreaker (like the possession arrow in basketball, for my sports-minded readers).
Example 3-5 gives the pseudocode for this solution to the Critical Section Problem.

EXAMPLE 3-5. Dekker’s Algorithm

int favored;
int Thread0WantsToEnter, Thread1WantsToEnter;

void ThreadZero()
{
 while (TRUE) do {
 Thread0WantsToEnter = 1;
 while (Thread1WantsToEnter) do {
 if (favored == 1) {
 Thread0WantsToEnter = 0;
 while (favored == 1) do {} // spin-wait
 Thread0WantsToEnter = 1;
 }
 }
 CriticalRegionZero;
 favored = 1;
 Thread0WantsToEnter = 0;
 OtherStuffZero;
 }
}

void ThreadOne()
{
 while (TRUE) do {
 Thread1WantsToEnter = 1;
 while (Thread0WantsToEnter) do {
 if (favored == 0) {
 Thread1WantsToEnter = 0;
 while (favored == 0) do {}
 Thread1WantsToEnter = 1;
 }
 }
 CriticalRegionOne;

62 C H A P T E R 3 :   P R O V I N G C O R R E C T N E S S A N D M E A S U R I N G P E R F O R M A N C E

 favored = 0;
 Thread1WantsToEnter = 0;
 OtherStuffOne;
 }
}

For all the previous attempts, we only had to show that one case led to a dilemma in order to
show there was a problem with the algorithm. To show that Dekker’s Algorithm gives a correct
solution, we must examine all possible interleavings of thread execution and show that each
one will lead to a desired outcome. For this algorithm, we can take all of the possible situations
between threads and condense them into the four cases listed next. Since the code for each
thread is algorithmically the same, we can restrict our analysis to one thread dealing with the
status of the other thread and know that the analysis of cases where the roles are reversed will
be the same.

Case 1

If there is no conflict for entry into the critical region, Dekker’s Algorithm will allow a thread
to enter as needed, just as the three previous attempts did. For example, if T0 is ready for access
to the critical region, it sets Thread0WantsToEnter to 1 and checks Thread1WantsToEnter. If the desire
flag for T1 is 0 (determined by the middle while condition test), T0 skips the body of the middle
while loop and enters the critical region.

Case 2a: T0 is the favored thread

For this case, we assume that T1 is executing in the critical region and T0 wishes entry. T0 first
sets Thread0WantsToEnter to 1. When it finds that the value of Thread1WantsToEnter is 1, T0 will
check the favored toggle. When the value is 0, T0 is the favored thread. T0 will not execute the
body of the if statement, but will wait for T1 to exit the critical region and reset its desire flag.
After that has happened, T0 will exit the middle while loop and proceed into the critical region.
Since Thread0WantsToEnter has been set and remains set while T0 does a spin-wait, T1 will be
prevented from entering the critical region until after T0 has taken advantage of the favored
status and completes execution in the critical region.

Case 2b: T1 is the favored thread

This case also assumes that T1 is executing in the critical region and T0 wishes entry. T0 first
sets Thread0WantsToEnter to 1. When it finds that the value of Thread1WantsToEnter is 1, T0 will
then check the favored toggle. When the value is 1, T1 is the favored thread and T0 resets its
desire flag before entering the spin-wait loop waiting for T1 to set the favored toggle upon exit
from the critical region. Once T0 has exited the spin-wait and set Thread0WantsToEnter to 1, T1
would not be allowed to enter the critical region until T0 has reset its desire flag after taking
advantage of the favored status and executed the critical region code.

E x a m p l e : T h e C r i t i c a l S e c t i o n P r o b l e m 63

Case 3

If both threads wish to enter the critical region at the same time, both threads will set their
respective desire flags. If T1 is the favored thread, upon entering the middle while loop, T0 will
execute the body of the if statement and reset its desire flag. By turning off its own flag, T0
allows T1 (the favored thread) to skip the if statement and exit the middle while loop into the
critical region. When it leaves the critical region, T1 sets the favored toggle to 0. T0 may then
proceed from the spin-wait on favored and into the critical region when Thread1WantsToEnter
has been reset.

What about indefinite postponement?

The fourth solution attempt suffered from indefinite postponement when a thread, having
exited the critical region, quickly executed other computations and reentered the critical region
before the random delay of the other thread had elapsed. Could T1 keep T0 from entering the
critical region? The only way that this can happen is if T1 is allowed to execute and T0 is not.
However, this situation violates the fairness criteria of Ben-Ari’s concurrent abstraction. Thus,
at some point we must allow T0 to execute the next atomic statement. When this next
statement is the evaluation of the while conditional expression of (favored == 1), the result will
be false and T0 will then break out of the spin-wait and set its desire flag. Once this happens,
T1 will not be allowed back into the critical region, since T0 has shown a desire to do so and
T1 is not the favored thread. The following interleaving shows one possible execution that
demonstrates this.

Current status:

Thread0WantsToEnter == 0
Thread1WantsToEnter == 1
favored == 1
T0 was last executing while (favored == 1) do {}
T1 is executing CriticalRegionOne

1. T1 exits critical region.

2. T1 sets favored = 0 and resets Thread1WantsToEnter = 0.

3. T1 executes OtherStuffOne.

4. T1 sets Thread1WantsToEnter = 1.

5. T1 tests Thread0WantsToEnter in while conditional.

6. T1 enters critical region.

7. T0 tests favored toggle in while conditional.

8. T0 finds favored == 0.

9. T0 sets Thread0WantsToEnter = 1.

10. T1 exits critical region.

11. T1 sets favored = 0.

64 C H A P T E R 3 :   P R O V I N G C O R R E C T N E S S A N D M E A S U R I N G P E R F O R M A N C E

12. T1 resets Thread1WantsToEnter = 0.

13. T1 executes OtherStuffOne.

14. T1 sets Thread1WantsToEnter = 1.

15. T1 tests Thread0WantsToEnter and finds T0 wishing to enter the critical region.

16. T1 resets Thread1WantsToEnter = 0.

17. T1 loops in spin-wait until (favored == 1).

18. T0 enters the critical region.

At some point, T0 must be given the chance to resume execution of at least one atomic
statement. When T0 is able to execute, it finds the favored toggle has been set in its favor and
it can set its desire flag to inform T1 that T0 is ready to enter the critical region. From this
interleaving we can conclude that a thread cannot indefinitely postpone another thread from
entering the critical region.

What Did You Learn?

Dekker’s Algorithm was used here to solve the Critical Section Problem. One of the obvious
drawbacks to Dekker’s Algorithm is that it is only defined for two threads. Plus, there are better
algorithms to solve this problem, such as Lamport’s Bakery Algorithm and Peterson’s
Algorithm. The latter is simpler than Dekker’s Algorithm and even has a variation that works
for multiple threads. Besides, all threading models and libraries have synchronization objects
that can enforce mutual exclusion between any number of threads. Thus, Dekker’s Algorithm
was not the main point of the preceding exercise.

The point of all of this was to show you how to identify concurrency errors or demonstrate
correctness using the concurrency abstraction of Ben-Ari and the interleaving of atomic
statement executions between the two threads. I hope that you tried the interleaving analysis
on your own for each solution attempt before reading about the faults that each attempt
contained. Some of these were subtle, particularly in the starvation case. This is not something
that a software tool would be able to identify, and this is why the interleaving analysis is
important and can assist you in designing correct concurrent solutions before we ever attempt
to alter a line of code.

I’ll be using the interleaving analysis during the discussions and implementation of several
algorithms in the later chapters of this book. You might want to practice your analysis skills as
you cover a new algorithm, especially those codes for which I don’t have analysis already.

There Are No Evil Threads, Just Threads Programmed for Evil

It is tempting to anthropomorphize (ascribe human attributes to) threads when trying to
determine how they will interact with each other. I do it with both serial and parallel codes
and data structures. It can make analysis a little easier to wrap your mind around. Just don’t

E x a m p l e : T h e C r i t i c a l S e c t i o n P r o b l e m 65

go too far with it. If you start giving them too many human passions and frailties, you could
start thinking that a thread will maliciously try to sabotage your application’s execution. As
with any program, threads will only do what you tell them to do (not necessarily what you
want them to do). Don’t program evil threads.

Performance Metrics (How Am I Doing?)
Once you have coded an algorithm, you will want to know how well that code will execute.
The faster an application runs, the less time a user will need to wait for her results. Also, shorter
execution time gives the user the chance to run larger data sets (e.g., a larger number of data
records, more pixels, or a bigger physical model) in an acceptable amount of time. For serial
applications, you can measure an application’s speed using a stopwatch. Simply time the run
from start to finish.

After you’ve made optimizations to the code (for example, rearranged the execution order of
statements, used a more efficient memory access scheme, or replaced a critical algorithm with
a more efficient one) and rebuilt the application, by simply comparing execution times from
the two versions you can see whether there was any serial execution improvement. It is the
same with concurrent programs.

The time taken to execute is your paramount concern in developing parallel solutions. When
doing comparisons, elapsed time is always the final judge of whether the concurrent code is
better than the serial one. If you’ve taken the time to modify your company’s flagship
application to run on multiple cores and the execution time is slower than the original, you
shouldn’t expect too much in the way of a Christmas bonus. However, after reading this book,
if you are able to make a positive change to the application and the parallel version runs faster,
how can you communicate how much faster your concurrent application now performs (and
enhance your bonus prospects)? You could report two execution figures—serial execution time
and parallel execution time on the same input data set—to your manager. Managers, being
the busy people that they are, will be happier if you give them one number instead of two.
One such number that offers a tangible comparison of serial and parallel execution time is
speedup.

Speedup

Simply stated, speedup is the ratio of serial execution time to parallel execution time. In the
past I’ve seen this ratio expressed as both a percentage and as a multiplier. I prefer stating
speedup figures as a multiplier, since using percentages can lead to confusion (and your goal
is to make clear to your manager the superiority of your programming skills and
accomplishments, not confuse him). For example, if you stated that your parallel execution is
200% faster than the serial code, does it run in half the time of the serial version or one third
of the time? Is 105% speedup almost the same time as the serial execution or twice as fast? Is
the baseline serial time 0% speedup or 100% speedup? On the other hand, if you said your

66 C H A P T E R 3 :   P R O V I N G C O R R E C T N E S S A N D M E A S U R I N G P E R F O R M A N C E

parallel application had a speedup of 2×, it is clear that it took half the time (i.e., you could
have run the parallel version twice in the same time it took the serial code to execute once).

When computing speedup, be sure to use the best serial algorithms and code to compare
against. In later chapters, we’ll see cases where an inferior serial algorithm is easier to transform
into a concurrent version. Even if this is the case, you must use the faster serial algorithm for
your speedup calculations. Who would voluntarily use a less-than-stellar serial application
when a better one was available? I assume that any big software project you undertake to
parallelize will already use the very best serial algorithms available. Even if it doesn’t, the best
serial code is still the bellwether application version against which your efforts are going to be
considered.

Be aware that speedup can (and should) change with the number of cores employed by the
application. You can get a feeling for the scalability of your code by noting how the speedup
changes as you make more cores available. Examples of speedup performance are graphed in
Figure 3-2. Perfect speedup (solid line) occurs when the computed speedup number is equal
to the number of cores (e.g., 4× speedup on four cores). For an application that scales well, the
speedup should increase at or close to the same rate as the amount of cores employed increases
(the dashed line in Figure 3-2). That is, if you double the number of cores, the speedup should
double. If your speedup figures fail to keep up (dotted line), your application doesn’t scale well
on the data sets you have been measuring.

Perfect scalability

0
1 2 3 4 5

Number of cores

Sp
ee

d
u

p

6 7 8

1

2

3

4

5

6

7

8

Good scalability

Poor scalability

FIGURE 3-2. Example speedup curves

In very rare circumstances, you may find that the speedup of your application exceeds the
number of cores. This phenomenon is known as superlinear speedup. If you run into this,
suspect that you have made some error. First, double-check the timings of both the serial and

P e r f o r m a n c e M e t r i c s (H o w A m I D o i n g ?) 67

the concurrent applications. Next, make sure that your applications are performing the desired
computations correctly and getting the expected results. Finally, ask yourself whether you are
testing your application with a data set whose size is typical, as opposed to one that simply tests
specific functionality.

The typical cause for superlinear speedup is that the data set has become small enough per core
to fit into local cache. When you ran the serial application, the data had to stream through
cache and the processor had to wait while cache lines were fetched. If the data was reused, the
cache lines that were evicted previously had to be reread, causing the processor to wait once
more. When the data is divided into chunks that all fit into the cache on a core, there is no
waiting for reused cache lines once they have all been placed in the cache. Thus, the use of
multiple cores can eliminate some of the overhead associated with the serial code executing
on a single core. Data sets that are too small—smaller than a typical data set size—can give you
a false sense of performance improvement.

Amdahl’s Law

Before starting any parallelization project, you may wish to estimate the amount of
performance increase (speedup) that you can realize. Without actually writing any concurrent
code, you can use Amdahl’s Law to give you an upper bound on the speedup you can attempt
to achieve. To use Amdahl’s Law, you will need to know what percentage of execution will be
able to run in parallel and what amount of code must run in serial. Since this is only an estimate,
you don’t need to have exact figures. If you have an idea about which functions should execute
mostly concurrent, you can use a profiler report (from a typical data set) with a breakdown of
percentages of execution time per function. Once you have the percentage of parallel execution
time and, consequently, serial execution time, just plug the values into the formula.

There are several formulations of Amdahl’s Law, but I prefer this one:

where pctPar is the percentage of execution time that will be run in parallel, and p is the
number of cores on which to run the parallel application. To compute speedup, the formula
has taken the serial execution time and normalized it to 1. The time of the parallel execution
is estimated in the denominator to be the percentage of serial time (1 – pctPar) and the
percentage of execution that can be run in parallel divided by the number of cores to be used
(pctPar/p). Figure 3-3 shows several speedup curves using this formula on different numbers
of cores with varying percentage amounts of parallel execution. Notice that the curve for 75%
parallel execution is only approaching 3× speedup at 8 cores.

By arbitrarily increasing the number of cores available, you can lower the amount of execution
time required for the parallel sections of your code as much as you want. If we assume infinite
numbers of cores are available, the parallel execution time could be essentially zero. With this

68 C H A P T E R 3 :   P R O V I N G C O R R E C T N E S S A N D M E A S U R I N G P E R F O R M A N C E

assumption, Amdahl’s Law gives us an upper bound on the speedup we might expect to achieve
from the parallelization of a serial application. With zero parallel time, the formula turns into
the reciprocal of the serial percentage; thus, 75% parallelism can get no more than 4× speedup
(on an infinite number of cores). This illustrates the fact that the speedup of a concurrent
application is ultimately dependent on the portion of serial execution. This is why you will
want to parallelize as much of the code as possible.

100% Parallel

0
1 2 3 4 5

Number of cores

Sp
ee

d
u

p

6 7 8

1

2

3

4

5

6

7

8

99% Parallel

95% Parallel

90% Parallel

75% Parallel

50% Parallel

FIGURE 3-3. Estimated speedup curves for different amounts of percentage of parallel execution time using Amdahl’s Law

Amdahl’s Law has received quite a bit of criticism for the way it ignores real-world
circumstances like concurrency overhead (communication, synchronization, and other thread
management) and not having processors with infinite numbers of cores available (yet). Other
parallel execution models have been proposed that attempt to make reasonable assumptions
for the discrepancies in the simple model of Amdahl’s Law. Still, for its simplicity and the
understanding by the user that this is an upper bound, which is very unlikely to be achieved
or surpassed, Amdahl’s Law is a pretty good indication of the potential for speedup in a serial
application.

Gustafson-Barsis’s Law

Besides not taking into account the overheads inherent in concurrent algorithms, one of the
strongest criticisms of Amdahl’s Law is that as the number of cores increase, the amount of
data handled is likely to increase as well. Amdahl’s Law assumes a fixed data set size for any
and all numbers of cores used. This is reflected in the assumption of the serial percentage
remaining the same. But what if you had eight cores and were able to compute a data set that
was eight times the size of the original? Does the serial execution time increase? Even if it does,
will the time of the serial portion in the concurrent code be the same fraction of overall

P e r f o r m a n c e M e t r i c s (H o w A m I D o i n g ?) 69

execution time as it would be if you ran this larger data set using the serial application? Perhaps
more to the point, can the larger data set even be run on a single core system?

The Gustafson-Barsis Law, also known as scaled speedup, takes into account an increase in the
data size in proportion to the increase in the number of cores and computes the (upper bound)
speedup of the application, as if the larger data set could be executed in serial. Where Amdahl’s
Law is a tool for predicting the amount of speedup you could achieve by parallelizing a serial
code, Gustafson-Barsis’s Law is used to compute the speedup of an existing parallel code. The
formula for scaled speedup is:

Speedup ≤ p + (1 – p)s

where p is the number of cores, and s is the percentage of time the parallel application spends
in serial execution for the given data set and number of cores. For example, if the total
execution time for a parallel application is 1,040 seconds on 32 cores, but 14 seconds of that
time is for serial execution on 1 of those 32 cores, the speedup of this application over the same
data set being run on a single thread (if it were possible) is:

Speedup ≤ 32 + (1 – 32)(0.013) = 32 – 0.403 = 31.597

N O T E
Could you have used Amdahl’s Law to compute this speedup estimate? If we take the serial

execution percentage of 1.3%, the equation for Amdahl’s Law yields 22.808 = 1/(0.013 +

(0.987/32)). However, this is a false computation, since the percentage of serial time is

relative to the parallel time of the 32-core execution, not the potential parallel time.

If you multiply the number of seconds (1,026) for parallel execution on 32 cores, you find

that the total amount of work done by the application takes 1,026*32+14 = 32,846 seconds.

The nonparallel time (14 seconds) is 0.0426% of that total work time. Using that figure,

Amdahl’s Law calculates a speedup of 1/(0.000426 + (0.999574/32)) = 31.582.

If you want to see the derivation of the Gustafson-Barsis Law, you can go to John L. Gustafson’s
original paper, “Reevaluating Amdahl’s Law” (Communications of the ACM, 1988) or Michael
J. Quinn’s book, Parallel Programming in C with MPI and OpenMP (McGraw-Hill, 2004).

Efficiency

Related to speedup is the metric of efficiency. Whereas speedup gives us a metric to determine
how much faster our parallel applications are versus their serial brothers, efficiency tells us
how well we are utilizing the computational resources of the system. To calculate the efficiency
of your parallel execution, take the observed speedup and divide by the number of cores used.
This number is then expressed as a percentage.

70 C H A P T E R 3 :   P R O V I N G C O R R E C T N E S S A N D M E A S U R I N G P E R F O R M A N C E

For example, if you have a 53× speedup on 64 cores, your efficiency is 82.8% (53/64 = 0.828).
This means that, on average, over the course of the execution, each of the cores is idle about
17% of the time.

You may be tempted to take this metric and think that if you ran the application on 17% fewer
threads and fewer cores, the efficiency would approach 100% without adversely affecting the
execution time. This might work, but it really depends on why the application isn’t getting full
use out of the cores. Using fewer threads means dividing the data into larger chunks, and larger
granularity can improve performance. Fewer threads would mean less contention on
synchronization objects and less time sitting idle waiting to be given the turn to update shared
variables. However, if the threads executing the parallel work are sitting idle waiting for results
from the thread running serial portions of the code, you probably won’t get any efficiency gain
(and will likely see an increase in execution time) from running on fewer threads (cores).

There are just too many causes and effects and different ways that threads running on cores
can interact to even begin to generalize what you should expect to happen if you increase or
decrease the number of threads running the application. You’ll just have to try a few different
situations for your application, take the measurements, and interpret the results with your
knowledge of how the application works and how it was threaded.

One Final Note on Speedup and Efficiency

Throughout this discussion of metrics, I assume that you are using one thread per core. If your
application overloads the system with more threads than cores, you need to use the number
of threads (in place of “cores”) in all the previous formulas. There can be performance benefits
(though usually minor) when you overload the system with threads. Of course, Intel processors
with Hyper-Threading (HT) technology are designed to support multiple threads per core.

Your measurements of speedup and efficiency will tell you whether the utilization of more
threads than cores is worthwhile. If your execution time remains almost the same with two
threads per core and no change in the data set, your speedup will also stay about the same.
Your efficiency will be halved, though. This is telling you that even if the physical cores are
cranking at nearly 100%, the threads are only being used half the time (where threads may
have been nearly fully utilized when there was only one thread per core). If hardware
utilization is more important to you, and the execution time is not suffering, not having all
threads as busy as possible may not be a detriment.

Review of the Evolution for Supporting Parallelism in Hardware
The following paragraphs take a roughly chronological tour of processor and platform
innovations that have led us to multicore processors. Being a self-described “software guy,” I
tend to drift off when programming books or presentations go on about hardware details for
long. So, I won’t take much time to cover this topic. It won’t hurt my feelings if you skip it.

R e v i e w o f t h e E v o l u t i o n f o r S u p p o r t i n g P a r a l l e l i s m i n H a r d w a r e 71

While it does nothing expressly parallel, out-of-order execution allows processors to execute
instructions whose arguments are ready to be used regardless of where the instructions were
within the serial code. After the execution, a reordering buffer “retires” instructions in the
order in which they were originally written. All of this was built into the hardware of processors
to get faster execution of instructions. The foundation for data flow parallelism is the idea of
initiating execution of instructions based on the readiness of arguments, rather than on
sequential order.

Multiple execution units launch two or more instructions at the same time, if those
instruction’s arguments are ready for use. Execution units are typically designed for specific
types of instructions, such as integer or floating-point computation, memory access, or
conditional expression evaluation. Intel HT Technology took advantage of the fact that not all
execution units within a serial processor would be used at the same time. If a thread didn’t
have any integer computations available, the operating system scheduler was free to allow
another thread that did have a pending integer computation to use the free integer execution
units. To the system and the user, HT appeared as a second “logical” processor in the system.

Streaming SIMD Execution (SSE) technology adds special registers to the processor that hold
multiple data elements at the same time. The multiple items are used in a single computation
via a single instruction and in the time it takes to execute that instruction. Each item in the
register, of course, is used in the same operation. For example, with a four-wide SSE register
set, you can load four integers into one SSE register, another four integers into another SSE
register, and add the two registers together storing the corresponding four results into a third
SSE register. This type of execution is also known as vector parallelism.

Symmetric multiprocessing (SMP) allows you to install multiple physical processors (chips)
onto a motherboard, which are then able to share memory and other system resources.
Multiple threads from a single process can be executed on the multiple processors. A thread
will have exclusive access to the cache available on the processor in which it is executing, as
well as the shared memory of the platform. SMP is more of a support feature of platforms and
operating systems than it is a processor technology.

Most recently, multicore processors have been rolled out with multiple processors built into
the chip. Increasing the speed of the clock that drives execution of instructions within the
processor requires higher power consumption and the generation of more excess heat from
the chips. If clock speeds had continued at the pace of doubling every 18 months or so, it was
hypothesized that the heat generated by processors would have approached that of a rocket
exhaust—clearly not a sustainable path to better and better performance. So, rather than
increase the speed of the processor’s clock, the extra chip real estate that has come from further
miniaturization of processor components has been devoted to installing additional processors.
Thus, lowering the clock speed and adding a second processor core lowers both the amount of
heat produced and the power required to run the multiple cores overall. It also provides a path
to keep increasing application performance, and that path to future performance goes through
concurrent programming and parallel execution.

72 C H A P T E R 3 :   P R O V I N G C O R R E C T N E S S A N D M E A S U R I N G P E R F O R M A N C E

C H A P T E R F O U R

Eight Simple Rules for Designing
Multithreaded Applications

SINCE IT IS RIGHT THERE IN THE TITLE OF THIS BOOK, THE FOLLOWING SENTENCE shouldn’t
come as any surprise: Concurrent programming is still more art than science. This chapter gives
eight simple rules that you can add to your toolkit of threading design methods. I’ve tried to
organize the rules in a semichronological way, but there’s no hard and fast order to the rules.
It’s like being confronted with, “No running by the pool,” and, “No diving in the shallow end.”
Both good ideas, but not diving can come before not running or vice versa.

By following these rules, you will have more success in writing the best and most efficient
threaded implementation of your applications. You may recognize some of these, since I’ve
mentioned a few of them in previous chapters. In upcoming chapters, when discussing the
design and implementation of specific algorithms, I’ll try to drop in a relevant reference to one
or more of these eight rules to show that they’re not just here to fill out an extra chapter.

Rule 1: Identify Truly Independent Computations
I’ve already covered this first rule seven ways to Sunday, but since it’s the crux of the whole
matter, it bears repeating at least one more time. You can’t execute anything concurrently
unless the operations that would be executed can be run independently of each other. I can
easily think of different real-world instances of independent actions being performed to satisfy
a single goal. Consider, for example, a DVD rental warehouse. Orders for movies are collected
and then distributed to the workers, who go out to where all the disks are stored and find
copies to satisfy their assigned orders. When one worker pulls out a classic musical comedy, it
does not interfere with another worker who is looking for the latest science fiction masterpiece,
nor will it interfere with a worker trying to locate episodes from the second season of a popular
crime drama series (I assume that any conflicts resulting from unavailable inventory have been
dealt with before orders were transmitted to the warehouse). Also, the packaging and mailing
of each order will not interfere with disk searches or the shipping and handling of any other
order.

There are cases in which you will have exclusively sequential computations that cannot be
made concurrent; many of these will be dependencies between loop iterations or steps that
must be carried out in a specific order. A list of common situations was covered earlier in
“What’s Not Parallel” on page 42.

Rule 2: Implement Concurrency at the Highest Level Possible
There are two directions you can take when approaching the threading of a serial code. These
are bottom-up and top-down. When initially analyzing your code, you are looking for the
computational hotspots that account for the most execution time. Running those portions in
parallel will give you the best chance of achieving the maximum performance possible.

In a bottom-up approach, you consider threading the hotspots in your code directly. If this is
not possible, search up the call stack of the application to determine whether there is another

74 C H A P T E R 4 :   E I G H T S I M P L E R U L E S F O R D E S I G N I N G M U L T I T H R E A D E D A P P L I C A T I O N S

place in the code that can execute the hotspots in parallel. If your hotspot is the innermost
loop of a nested loop structure, examine each successive layer of loop nesting, from the
innermost to the outermost, to see whether that level can be made concurrent. Even if it is
possible to employ concurrency at the hotspot code, you should still look to see whether it
would be possible to implement that concurrency at a point in the code higher up in the call
stack. This can increase the granularity of the execution done by each thread.

To illustrate this rule, consider threading a video encoding application. If your hotspot is the
computation of individual pixels, you can look to parallelize the loop(s) that deal with each
pixel computation within a single frame of video. Looking further “up” from this, you might
find that the loop over the frames of video can be executed concurrently by independently
processing groups of frames. If the video encoding application is expected to process multiple
videos, expressing your concurrency by assigning a different stream to each thread will be the
highest level of possible concurrency.

The other approach to threading is top-down, where you first consider the whole application
and what the computation is coded to accomplish (all the parts of the application that combine
to realize that computation). While there is no obvious concurrency, distill the parts of the
computation that still contain execution of the hotspot into successively smaller parts until you
can identify independent computations.

For the video encoding application, if your hotspot is the computation of individual pixels, the
top-down approach would first consider that the application handles encoding of multiple,
independent video streams (which all include the pixel computations). If you can parallelize
the application there, you’ve found your highest level. If not, working “down” to the individual
pixel will take you through frames within a single stream and then to pixels within a frame.

The objective of this rule is to find the highest level where concurrency can be implemented
so that your hotspot of code will be executed concurrently. This is all predicated on the belief
that “higher” levels in the layers of your algorithms will equal more (independent) work, much
like the way that layers of a parfait accumulate mass the higher up in the glass you go. Placing
concurrency at the highest possible level around a hotspot is one of the best ways to achieve
that all-important coarse-grained division of work to be assigned to threads.

Rule 3: Plan Early for Scalability to Take Advantage of Increasing
Numbers of Cores
As I’m writing this, quad-core processors are becoming the default multicore chip. The number
of cores available in future processors will only increase. Thus, you should plan for such
processor increases within your software. Scalability is the measure of an application’s ability
to handle changes, typically increases, in system resources (e.g., number of cores, memory size,
bus speed) or data set sizes. In the face of more cores being available, you must write flexible
code that can take advantage of different numbers of cores.

R u l e 3 : P l a n E a r l y f o r S c a l a b i l i t y t o T a k e A d v a n t a g e o f I n c r e a s i n g N u m b e r s o f C o r e s 75

To paraphrase C. Northcote Parkinson, “Data expands to fill the processing power available.”
This means that as the amount of computational power increases (more cores), the more likely
it will be that the data to be processed will expand. There are always more computations to be
done. Whether it is increasing the model fidelity in scientific simulations, processing an HD
stream instead of standard video, or searching through multiple and larger databases, if you
are given additional processing resources, someone will always have more data to process.

Designing and implementing concurrency by data decomposition methods will give you more
scalable solutions. Task decomposition solutions will suffer from the fact that the number of
independent functions or code segments in an application is likely limited and fixed during
execution. After each independent task has a thread and core to execute on, increasing the
number of threads to take advantage of more cores will not increase performance of the
application. Since data sizes are more likely to increase than the number of independent
computations in an application, data decomposition designs will have the best chance for
scalability.

Even though an application has been written with threads assigned to independent functions,
when the input workload increases, you may still be able to utilize more threads. Consider
building a grocery store where there are a finite number of separate tasks to be done. If the
developer buys adjacent land and the floor space of the store to be built is doubled, you can
expect extra workers to be assigned within some of those tasks. That is, extra painters, extra
roofers, extra floor tilers, and extra electricians can be used. Therefore, you should be aware
of the data decomposition possibilities that can arise from increased data sets, even within
solutions that have been decomposed by tasks, and plan for the use of extra threads on extra
cores.

Rule 4: Make Use of Thread-Safe Libraries Wherever Possible
If your hotspot computations can be executed through a library call, you should strongly
consider using an equivalent library function instead of executing handwritten code. Even for
serial applications, it’s never a good idea to “reinvent the wheel” by writing code that performs
calculations already encapsulated by optimized library routines. Many libraries, such as the
Intel Math Kernel Library (MKL) and Intel Integrated Performance Primitives (IPP), have
functions that are threaded to take advantage of multicore processors.

Even more important than using threaded library routines, though, is ensuring that all library
calls used are thread-safe. If you have replaced the hotspot in your serial code with a call to a
library function, it may still be the case that some point higher in the call tree of your application
can be divided into independent computations. When you have concurrent computations
executing library function calls, especially third-party libraries, routines that reference and
update shared variables within the library may cause data races. Check the library
documentation for the thread-safety of any library you are using within concurrent execution.
When writing and using your own library routines that will be executed concurrently, be sure

76 C H A P T E R 4 :   E I G H T S I M P L E R U L E S F O R D E S I G N I N G M U L T I T H R E A D E D A P P L I C A T I O N S

the routines are reentrant. If this is not possible, you will need to add synchronization in order
to protect access to shared resources.

Rule 5: Use the Right Threading Model
If threaded libraries are insufficient to cover all the concurrency of an application and you must
employ user-controlled threads, don’t use explicit threads if an implicit threading model (e.g.,
OpenMP or Intel Threading Building Blocks) has all the functionality you need. Explicit threads
do allow for finer control of the threading implementation. However, if you are only
parallelizing compute-intensive loops or don’t need the extra flexibility you can get with
explicit threads, there’s probably no reason to do more work than necessary. The more complex
the implementation, the easier it will be to make a mistake and the harder it will be to maintain
such code later.

OpenMP is focused on data decomposition methods, especially targeted to threading loops that
range over large data sets. Even if this is the only type of parallelism that you can introduce
into an application, there may be external requirements (such as engineering practices dictated
by your employer or management preferences) that will prohibit your use of OpenMP. In that
case, you will need to implement your threading with an approved (explicit) model. In such
a situation, I recommend that you use OpenMP to prototype the planned concurrency and
estimate the potential performance gains, possible scalability, and how much effort will be
needed to thread the serial code with explicit threads.

Rule 6: Never Assume a Particular Order of Execution
With serial computations, it is easy to predict the statement that will be executed following
any other statement in a program. On the other hand, execution order of threads is
nondeterministic and controlled by the OS scheduler. This means that there is no reliable way
of predicting the order of threads running from one execution to another, or even which thread
will be scheduled to run next. This is done primarily to hide execution latency within an
application, especially when run on a system with fewer cores than threads. If a thread blocks
because it needs memory that is not located in cache or to process an I/O request, the scheduler
will swap out the blocked thread and swap in a thread that is ready to run.

Data races are a direct result of this scheduling nondeterminism. If you assume that one thread
will write a value into a shared variable before another thread will read that value, you may
be right all of the time, you may be right some of the time, or you may be right none of the
time. Sometimes, if you’re lucky, the order of thread execution remains unchanged on a
specific platform each and every time you run an application. Every difference between systems
(bit locations on the disk or memory speed or frequency of the AC power coming out of the
wall sockets) has the potential to alter the thread schedule. Code that relies on a particular

R u l e 5 : U s e t h e R i g h t T h r e a d i n g M o d e l 77

order of execution among threads that is enforced through nothing more than positive thinking
may be plagued by problems such as data races and deadlock.

From a performance perspective, it is best to allow threads to run as unencumbered as possible,
like greyhounds or thoroughbreds in a race. Don’t try to enforce a particular order of execution
unless it is absolutely necessary. You need to recognize those times when it is absolutely
necessary, and implement some form of synchronization to coordinate the execution order of
threads relative to each other.

Consider a relay race team. The first runner starts off running as fast as possible. However, to
successfully complete the race, the second, third, and anchor runners must wait to receive the
baton before they can begin to run their assigned portions of the race. The baton passing is a
synchronization between consecutive runners that controls the order of “execution” between
stages in the race.

Rule 7: Use Thread-Local Storage Whenever Possible or
Associate Locks to Specific Data
Synchronization is overhead that does not contribute to the furtherance of the computation,
except to guarantee the correct answers are produced from the parallel execution of an
application. Synchronization is a necessary evil. Even so, you should actively seek to keep the
amount of synchronization to a minimum. You can do this by using storage that is local to
threads or using exclusive memory locations (such as an array element indexed by thread ID).

Temporary work variables are rarely shared between threads, and should be declared or
allocated locally to each thread. Variables that hold partial results for each thread should also
be local to threads. Combining the partial results into a shared location will require some
synchronization. Ensuring that the shared updates are done as infrequently as possible will
keep the amount of overhead to a minimum. If you are using explicit threads, you can use the
available thread-local storage APIs to enable the persistence of data local to threads from one
threaded region to another or from one threaded function call to the next execution of the
same function.

If local storage for each thread is not a valid option and you must coordinate access to shared
resources through synchronization objects (such as a lock), be sure to properly associate (or
“attach”) locks to data items. The easiest way to do this is to have a one to one (1:1) relationship
of locks to data items. If you have multiple shared variables that are always accessed together,
use a single lock to allow exclusive access to all critical regions involving these variables. In
later chapters, I’ll discuss some of the tradeoffs and alternative synchronization techniques that
you can employ, especially if you have to protect access to a large collection of data (for
example, an array of 10,000 items).

However you decide to associate locks with data items, never associate more than one lock to
a single data object. Segal’s Law states, “A man with a watch knows what time it is. A man

78 C H A P T E R 4 :   E I G H T S I M P L E R U L E S F O R D E S I G N I N G M U L T I T H R E A D E D A P P L I C A T I O N S

with two watches is never sure.” If two different lock objects—say, lockA and lockB—protect
access to the same variable, one part of the code may use lockA for access while another section
of code can use lockB. Threads executing in these two code portions will create a data race,
since each will assume it has exclusive access to the contested data.

Rule 8: Dare to Change the Algorithm for a Better Chance of
Concurrency
For comparing performance of applications, both serial and concurrent, the bottom line is wall
clock execution time. When choosing between two or more algorithms, programmers may rely
on the asymptotic order of execution. This metric will almost always correlate with an
application’s relative performance to another. That is, with everything else held constant, an
application that uses an O(n log n) algorithm (like Quicksort) will run faster than an O(n2)
algorithm (such as selection sort) and will generate the same results.

In concurrent applications, algorithms with a better asymptotic order of execution will run
faster, too. Nonetheless, there will be times when the best serial algorithm will not be amenable
to parallelization. If you cannot easily turn a hotspot into threaded code (and you can’t find a
point higher in the call stack of the hotspot that can be made concurrent), you should consider
using a suboptimal serial algorithm to transform, rather than the algorithm currently in the
code.

For example, consider the linear algebra operation for the multiplication of two square
matrixes. Strassen’s Algorithm has one of the best asymptotic orders of execution, O(n 2.81).
This is better than the O(n 3) of the traditional triple-nested loop algorithm. Strassen’s method
divides up each of the matrixes into four chunks (or submatrixes) and uses seven recursive
calls to multiply the n/2 × n/2 submatrixes. To parallelize these recursive calls, you could create
a new thread to execute each of the seven independent submatrix multiplications. The number
of threads will increase exponentially (much like the wives, sacks, cats, and kittens coming
from St. Ives). As the submatrixes get smaller and smaller, the granularity of the assigned work
given to a newly created thread will get finer and finer. When the submatrixes achieve a given
size, switch to a serial algorithm.

A much easier means to parallelize matrix multiplication is to use the asymptotically inferior
triple-nested loop algorithm. There are several ways to perform a data decomposition on the
matrixes (divide by rows, divide by columns, or divide by blocks) and assign the necessary
computations to threads. You can do this using OpenMP pragmas at one of the loop levels or
by using explicit threads that implement the division of the loop indexes as needed. Less code
modification is required for the simpler serial algorithm, and the structure of the code would
likely be left more intact than it would be if you attempted to thread Strassen’s Algorithm.
Better yet, follow Simple Rule 4 and use a concurrent library function that performs the matrix-
matrix multiplication.

R u l e 8 : D a r e t o C h a n g e t h e A l g o r i t h m f o r a B e t t e r C h a n c e o f C o n c u r r e n c y 79

Summary
I’ve given you eight simple rules that you should keep in mind when designing the threading
that will transform a serial application into a concurrent version. By following the rules
presented here, I’ve been able to more easily create concurrent solutions that are more robust,
less likely to contain threading problems, and that move toward optimal performance with less
development time. I’m sure you will, too.

80 C H A P T E R 4 :   E I G H T S I M P L E R U L E S F O R D E S I G N I N G M U L T I T H R E A D E D A P P L I C A T I O N S

C H A P T E R F I V E

Threading Libraries

THIS CHAPTER WILL REVIEW SOME OF THE DETAILS OF THE THREADING LIBRARIES used in
subsequent chapters to implement the algorithms. I am assuming that you are already familiar
with at least one of these threading methods. I’m not expecting proficiency, but I hope you’ve
at least tried some coding examples when you first looked at learning how to write threaded
code.

If you are unfamiliar with any of the threading libraries I’ve used here, this chapter should
provide you with enough details to understand the algorithms implemented with such a library
and any library-specific features that are used. (If you want more details, find one of the fine
reference texts or an online tutorial.) Otherwise, this should be a review. If you’re chomping
at the bit to get into the algorithm design parts of the book, you can skip over this chapter for
now and come back when you might have a question about syntax or threading.

Implicit Threading
Implicit threading libraries take care of much of the minutiae needed to create, manage, and
(to some extent) synchronize threads. All the little niggly details are hidden from programmers
to make concurrent programming easier to implement and understand. Of course, by not
allowing (forcing?) you to deal with these details, the expressiveness and flexibility of implicit
threading libraries are not as great as you might find with explicit threading. However, a
majority of algorithms that can be written concurrently can take advantage of the limited scope
of features within the implicit libraries.

The two libraries that are covered in this section approach concurrent programming differently.
OpenMP implements concurrency through special pragmas and directives inserted into your
source code to indicate segments that are to be executed concurrently. These pragmas are
recognized and processed by the compiler. Intel TBB uses defined parallel algorithms to execute
methods within user-written classes that encapsulate the concurrent operations.

OpenMP

OpenMP is a set of compiler directives, library routines, and environment variables that specify
shared-memory concurrency in FORTRAN, C, and C++ programs. The OpenMP Architecture
Review Board (ARB), which oversees the specification of OpenMP, is made up of members
from many different commercial and academic institutions. The rationale behind the
development of OpenMP was to create a portable and unified standard of shared-memory
parallelism. OpenMP was first introduced in November 1997 with a specification for
FORTRAN, and in the following year, a specification for C/C++ was released. As of this writing,
the current OpenMP specification is version 3.0, released in May 2008.

All major compilers support the OpenMP language. This includes the Microsoft Visual
C/C++ .NET for Windows and the GNU GCC compiler for Linux. The Intel C/C++ compilers,
for both Windows and Linux, also support OpenMP.

82 C H A P T E R 5 :   T H R E A D I N G L I B R A R I E S

OpenMP directives demarcate code that can be executed in parallel (called parallel regions)
and control how code is assigned to threads. The threads in an OpenMP code operate under
the fork-join model. When the main thread encounters a parallel region while executing the
application, a team of threads is forked off, and these threads begin executing the code within
the parallel region. At the end of the parallel region, the threads within the team wait until all
other threads in the team have finished before being “joined.” The main thread resumes serial
execution with the statement following the parallel region. The implicit barrier at the end of
all parallel regions (and most other constructs defined by OpenMP) preserves sequential
consistency.

N O T E
Due to the high overhead of creating and destroying threads, quality compilers will create

the team of threads when the first parallel region is encountered and will then simply put

the team to sleep at the join operation and wake the threads for subsequent forks.

For C/C++, OpenMP uses pragmas as directives. All OpenMP pragmas have the same prefix of
#pragma omp. This is followed by an OpenMP construct and one or more optional clauses to
modify the construct. To define a parallel region within an application, use the parallel
construct:

#pragma omp parallel

This pragma will be followed by a single statement or block of code enclosed with curly braces.
When the application encounters this statement during execution, it will fork a team of threads,
execute all of the statements within the parallel region on each thread, and join the threads
after the last statement in the region.

In many applications, a large number of independent operations are found in loops. Using the
loop worksharing construct in OpenMP, you can split up these loop iterations and assign them
to threads for concurrent execution. The parallel for construct will initiate a new parallel
region around the single for loop following the pragma and divide the loop iterations among
the threads of the team. Upon completion of the assigned iterations, threads sit at the implicit
barrier at the end of the parallel region waiting to join with the other threads.

It is possible to split up the combined parallel for construct into two pragmas: a parallel
construct and the for construct, which must be lexically contained within a parallel region.
Use this separation when there is parallel work for the thread team other than the iterations
of the loop. You can also attach a schedule clause to the loop worksharing construct to control
how iterations are assigned to threads. The static schedule will divide iterations into blocks
and distribute the blocks among threads before the loop iterations begin execution; round robin
scheduling is used if there are more blocks than threads. The dynamic schedule will assign one
block of iterations per thread in the team; as threads finish the previous set of iterations, a new
block is assigned until all blocks have been distributed. There is an optional chunk argument for
both static and dynamic scheduling that controls the number of iterations per block.

I m p l i c i t T h r e a d i n g 83

By default, almost all variables in an OpenMP threaded program are shared between threads.
The exceptions to this shared access rule are: the loop index variable associated with a loop
worksharing construct (each thread must have its own copy in order to correctly iterate
through the assigned set of iterations); variables declared within a parallel region or declared
within a function that is called from within a parallel region; and any other variable that is
placed on the thread’s stack (e.g., function parameters). If you use nested loops within a loop
worksharing construct in C/C++, only the loop index variable immediately succeeding the
construct will automatically be made private. If other variables must be local to threads, such
as the loop index variables for nested loops, add a private clause to the relevant construct. A
local copy of the variables in the list will be allocated for each thread. The initial value of
variables that are listed within the private clause will be undefined, and you must assign value
to them before they are read within the region of use. OpenMP has synchronization constructs
that ensure mutual exclusion to your critical regions. Use these when variables must remain
shared by all threads, but updates must be performed on those variables in parallel regions.
The critical construct acts like a lock around a critical region. Only one thread may execute
within a protected critical region at a time. Other threads wishing to have access to the critical
region must wait until no thread is executing the critical region.

OpenMP also has an atomic construct to ensure that statements will be executed in an atomic,
uninterruptible manner. There is a restriction on which types of statements you can use with
the atomic construct, and you can only protect a single statement. The single and master
constructs will control execution of statements within a parallel region so that only one thread
will execute those statements (as opposed to allowing only one thread at a time). The former
will use the first thread that encounters the construct, while the latter will allow only the
master thread (the thread that executes outside of the parallel regions) to execute the protected
code.

A common computation is to summarize or reduce a large collection of data to a single value.
For example, this may include the sum of the data items or the maximum or minimum of the
data set. The algorithm to do such computations has a dependence on the shared variable used
to collect the partial and final answers. OpenMP provides a clause to handle the details of a
concurrent reduction. The reduction clause requires associative and commutative operations
for combining data, as well as a list of reduction variables. Each thread within the parallel team
will receive a private copy of the reduction variables to use when executing the assigned
computations. Unlike variables contained in a private clause, these private variables are
initialized with a value that depends on the reduction operation. At the end of the region with
a reduction clause, all local copies are combined using the operation noted in the clause, and
the result is stored in the shared copy of the variable.

The code in Example 5-1 is almost the same code given in Example 2-2. The application
computes an approximation of the value for pi using numerical integration and the midpoint
rectangle rule. The code divides the integration range into num_rect intervals and computes the
functional value of 4.0/(1+x 2) for the midpoint of each interval (rectangle). The functional

84 C H A P T E R 5 :   T H R E A D I N G L I B R A R I E S

values (height) are summed up and multiplied by the width of the intervals in order to
approximate the area under the curve of the function.

EXAMPLE 5-1. Computing pi with numerical integration using OpenMP

static long num_rects = 1000000;

int main(int argc, char* argv[])
{
 double mid, height, width, sum=0.0;
 int i;
 double area;

 width = 1./(double)num_rects;

#pragma omp parallel for private(mid, height) reduction(+:sum)
 for (i=0; i<num_rects; i++) {
 mid = (i + 0.5)*width;
 height = 4.0/(1.+ mid*mid);
 sum += height;
 }

 area = width * sum;
 printf("The value of PI is %f\n",area);
 return 0;
}

The difference in the current example is that an OpenMP loop worksharing construct has been
added. The OpenMP-compliant compiler will insert code to spawn a team of threads, give a
private copy of the mid, height, and i variables to each thread; divide up the iterations of the
loop between the threads; and finally, when the threads are done with the assigned
computations, combine the values stored in the local copies of sum into the shared version. This
shared copy of sum will be used to compute the pi approximation when multiplied by the
width of the intervals.

A new feature in OpenMP 3.0 is task concurrency, enabled through the use of the task
construct. The task construct must be within a parallel region, and creates an assignable task
from the associated block of code. Upon encountering a task construct, a thread may execute
the task immediately or defer execution. If the task execution is deferred, any thread within
the team may execute the task. You can use task synchronization constructs to ensure that
previously created tasks have completed.

The OpenMP specification includes a set of environment variables and API functions to give
the programmer more control over how the application will execute. Perhaps the most useful
environment variable is OMP_NUM_THREADS, which will set the number of threads to be used for
the team in each parallel region. The corresponding API function to set the number of threads
is omp_set_num_threads(). This function takes an integer parameter and will use that number of
threads in the team for the next parallel region encountered. If neither of these methods is
used to set the number of threads within a team, the default number will be used. This default

I m p l i c i t T h r e a d i n g 85

is implementation-dependent, but will most likely be the number of cores available on the
system at runtime.

The OpenMP specification contains many more directives, environment variables, and API.
Consult the specification document for full details at http://www.openmp.org.

Intel Threading Building Blocks

Intel TBB is a C++ template-based library for loop-level parallelism that concentrates on
defining tasks rather than explicit threads. The components of TBB include generic parallel
algorithms, concurrent containers, low-level synchronization primitives, and a task scheduler.
TBB is available in both commercial and open source versions. At the time of this writing, TBB
2.1 is the most recent version.

Programmers using TBB can parallelize the execution of loop iterations by treating chunks of
iterations as tasks and allowing the TBB task scheduler to determine the task sizes, number of
threads to use, assignment of tasks to those threads, and how those threads are scheduled for
execution. The task scheduler will give precedence to tasks that have been most recently in a
core with the idea of making best use of the cache that likely contains the task’s data. The task
scheduler utilizes a task-stealing mechanism to load balance the execution.

The parallel_for template parallelizes tasks that are contained within a for loop. The template
requires two parameters: a range type over which to iterate and a body type that executes
iterations over the range or a subrange. The range class must define a copy constructor and a
destructor, the methods is_empty() (which returns TRUE if the range is empty) and
is_divisible() (which returns TRUE if the range can be split), and a splitting constructor (to
divide the range in half). A partitioner class object can be used to heuristically find the smallest
number of iterations that should be assigned. The TBB library contains two predefined range
types: blocked_range and blocked_range2D. These ranges are used for single- and two-
dimensional ranges, respectively.

The body class must define a copy constructor and a destructor as well as the operator(). The
operator() will contain a copy of the original serial loop that has been modified to run over a
subrange of values that come from the range type.

The parallel_reduce template will iterate over a range and combine partial results computed
by each task into a final (reduction) value. The range type for parallel_reduce has the same
requirements as parallel_for. The body type needs a splitting constructor and a join method.
The splitting constructor in the body copies read-only data required to run the loop body and
to assign the identity element of the reduction operation that initializes the reduction variable.
The join method combines partial results of tasks based on the reduction operation being used.

Other generic parallel algorithms included in the TBB library are:

• parallel_do, which executes independent loop iterations with unknown or dynamically
changing bounds

86 C H A P T E R 5 :   T H R E A D I N G L I B R A R I E S

• parallel_scan, which computes the parallel prefix of a data set

• pipeline, for data-flow pipeline patterns

• parallel_sort, an iterative version of Quicksort that has been parallelized

Intel TBB also defines concurrent containers for hash tables, vectors, and queues. The C++ STL
containers are not thread-safe. The TBB containers are designed for safe use with multiple
threads attempting concurrent access to the containers. Not only can you use these containers
in conjunction with the TBB parallel algorithms, but you can also use them within concurrent
codes implemented with other threading libraries.

Mutex objects, on which a thread can obtain a lock and enforce mutual exclusion on critical
code regions, are available within TBB. There are several different types of mutexes. A
spin_mutex object will put a thread requesting a lock on the mutex into a spin-wait loop until
the mutex is available. A queuing_mutex object is scalable, which means it tends to take the same
amount of time regardless of the number of threads. It is also fair, meaning that it will block a
thread until the mutex is available (spin_mutex does not have these properties). There are also
readers/writer lock versions of these two mutex types. The other type of synchronization that
TBB supports is atomic operations. Besides a small set of simple operators, there are atomic
methods fetch_and_store (update with given value and return original), fetch_and_add
(increment by given value and return original), and compare_and_swap (if current value equals
second value, update with first; always return original value).

The code in Example 5-2 is the TBB version of the midpoint rectangle rule for numerical
integration. The computation of the heights and areas is encapsulated in the MyPi class and
implemented in the operator().

EXAMPLE 5-2. Computing pi with numerical integration using Intel TBB

#include <stdio.h>

#include "tbb/parallel_reduce.h"
#include "tbb/task_scheduler_init.h"
#include "tbb/blocked_range.h"
#include "tbb/partitioner.h"

using namespace std;
using namespace tbb;

static long num_rects = 100000;

class MyPi {
 double *const my_rects;

public:
 double partialHeight;

 MyPi(double *const width) : my_rects(width), partialHeight(0) {}

 MyPi(MyPi& x, split) : my_rects(x.my_rects), partialHeight(0) {}

I m p l i c i t T h r e a d i n g 87

 void operator()(const blocked_range<size_t>& r) {
 double rectangleWidth = *my_rects;
 double x;
 for (size_t i = r.begin(); i != r.end(); ++i) {
 x = (i + 0.5) * rectangleWidth;
 partialHeight += 4.0/(1.+ x*x);
 }
 }

 void join(const MyPi& y) {partialHeight += y.partialHeight;}
};

int main(int argc, char* argv[])
{
 double area;
 double width = 1./(double)num_rects;
 MyPi my_block((double *const)&width);
 task_scheduler_init init;

 parallel_reduce(blocked_range<size_t>(0,num_rects), my_block, auto_partitioner());
 area = my_block.partialHeight * width;

 printf("The value of PI is %f\n",area);
 return 0;
}

This example uses the parallel_reduce algorithm to launch threads and compute the numerical
integration. The task scheduler breaks up the iteration range into smaller chunks. The chunk
of loop iterations is considered a separate task that can be executed by a thread. Once the local
partialHeight variables calculated within each task are added together through the join
method, the final sum of heights is multiplied by the width and the computed approximation
to pi is printed.

N O T E
Lambda functions in the planned C++0x standard make writing and using many TBB

algorithms easier, since you don’t need to write whole class definitions as in Example 5-2.

Since the new C++ standard was not finalized at the time this book went to press and there

was sparse support in compilers, the TBB examples in upcoming chapters will fall back on

the “old” ways and define new classes to encapsulate code for tasks. If you have a compiler

that supports lambda functions, you can try rewriting the examples given here with them.

Explicit Threading
Explicit threading libraries require the programmer to control all aspects of threads, including
creating threads, associating threads to functions, and synchronizing and controlling the
interactions between threads and shared resources. The two most prominent threading
libraries in use today are POSIX threads (Pthreads) and Windows Threads by Microsoft. While

88 C H A P T E R 5 :   T H R E A D I N G L I B R A R I E S

the syntax is different between the two APIs, most of the functionality in one model can be
found in the other. Each model can create and join threads, and each features synchronization
objects to coordinate execution between threads and control the access to shared resources by
multiple threads executing concurrently. Let’s start with Pthreads for readers who use Linux.

Pthreads

Pthreads has a thread container data type of pthread_t. Objects of this type are used to reference
the thread (borrowing terms from Windows Threads, I tend to call this object the handle of
the created thread). To create a thread and associate it with a function for execution, use the
pthread_create() function. A pthread_t handle is returned through the parameter list. When
one thread needs to be sure that some other thread has terminated before proceeding with
execution, it calls pthread_join(). The calling thread uses the handle of the thread to be waited
on as a parameter to this function. If the thread of interest has terminated prior to the call,
pthread_join() returns immediately with the threaded function’s exit code (if any) from the
terminated thread; otherwise, the calling thread is blocked until that currently executing
thread has completed.

The two synchronization objects most commonly used with Pthreads are the mutex
(pthread_mutex_t) and the condition variable (pthread_cond_t). You must first initialize instances
of these objects before you can use them within a program. Besides providing functions to do
this initialization, the Pthreads library includes defined constants that you can use for default
static initialization when objects are declared. Only one thread at a time can hold a mutex
object. Threads request the privilege of holding a mutex by calling pthread_lock(). Other
threads attempting to gain control of the mutex will be blocked until the thread that is holding
the lock calls pthread_unlock().

Condition variables are associated (through programming logic) with an arbitrary conditional
expression and signal threads when the status of the condition under consideration may have
changed. Threads block and wait on a condition variable to be signaled when calling
pthread_cond_wait() on a given condition variable. A mutex object is always coupled with a
condition variable. This mutex protects the shared variables involved in the conditional
expression associated with the condition variable. When pthread_cond_wait() is called, the
mutex is unlocked and made available to another thread.

At some point in the execution, when the status of the condition may have changed, an
executing thread calls pthread_cond_signal() on a condition variable to wake up a thread that
has been blocked. A thread that receives the signal will return from the pthread_cond_wait()
only after the thread has been given control of the related mutex. Upon that return, the thread
should first check the state of the conditional expression and either return to waiting on the
condition variable (condition is not met) or proceed with execution. Signals to condition
variables do not persist. Thus, if there is no thread waiting on a condition variable when it is

E x p l i c i t T h r e a d i n g 89

signaled, that signal is discarded. The pthread_cond_broadcast() function will wake all threads
that are waiting on the condition variable.

The code in Example 5-3 is the Pthreads version of the midpoint rectangle rule for numerical
integration. The computation of the heights and areas is encapsulated in the function
threadFunction(). When created, each of the four threads (NUM_THREADS) begins execution on this
function.

EXAMPLE 5-3. Computing pi with numerical integration using Pthreads

#include <stdio.h>
#include <pthread.h>

#define NUM_RECTS 1000000
#define NUM_THREADS 4

double gArea = 0.0;
pthread_mutex_t gLock;

void *threadFunction(void *pArg)
{
 int myNum = *((int *)pArg);
 double partialHeight = 0.0, lWidth = 1.0 / NUM_RECTS, x;

 for (int i = myNum; i < NUM_RECTS; i += NUM_THREADS)
 {
 x = (i + 0.5f) / NUM_RECTS;
 partialHeight += 4.0f / (1.0f + x*x);
 }

 pthread_mutex_lock(&gLock);
 gArea += partialHeight * lWidth;
 pthread_mutex_unlock(&gLock);
}

void main()
{
 pthread_t tHandles[NUM_THREADS];
 int tNum[NUM_THREADS];

 pthread_mutex_init(&gLock, NULL);
 for (int i = 0; i < NUM_THREADS; i++) {
 tNum[i] = i;
 pthread_create(&tHandles[i], NULL, threadFunction,(void *)&tNum[i]);
 }

 for (int j=0; j<NUM_THREADS; ++j) {
 pthread_join(tHandles[j], NULL);
 }

 pthread_mutex_destroy(&gLock);
 printf("Computed value of Pi: %f\n", gArea);
}

90 C H A P T E R 5 :   T H R E A D I N G L I B R A R I E S

The main() routine in this example spawns four threads to divide up the loop iterations of the
area computation. A thread ID number is assigned to each thread through the single parameter
to threadFunction(). This number determines which threads execute which iterations of the
loop. Each thread has a private copy of partialHeights to store the results of assigned iterations.
The shared variable, gArea, is updated within a critical region protected by the gLock mutex.
Back in the main() routine, the process thread waits for all the worker threads to complete
execution, calling pthread_join() with each handle, before printing the computed area held in
gArea.

Windows Threads

Windows Threads uses the ubiquitous kernel object HANDLE type for the handle of a thread. The
_beginthreadex() function is recommended for creating a thread, especially if the code will be
using the C runtime library. The return value of this function will need to be cast to HANDLE.
The alternate CreateThread() function returns the HANDLE of a spawned thread. These two
functions have the exact same set of parameters, but the former is safer to use with regard to
initialization of thread resources and more reliable in the reclamation of allocated resources at
thread termination.

To make one thread wait for another thread to terminate, call WaitForSingleObject(). Since any
kernel object in a program is referenced through a HANDLE, this function will block the calling
thread until the HANDLE parameter is in the signaled state. If the HANDLE references a thread, the
object will be signaled when the thread terminates. What it means for a HANDLE to be signaled
is different for each type of kernel object. Windows also provides the function
WaitForMultipleObjects(), which makes a thread wait until at least one or all of up to 64
HANDLEs are in the signaled state. Thus, with a single function call, a thread can join multiple
threads.

Windows Threads provides two basic mutual exclusion synchronization objects: the mutex and
the CRITICAL_SECTION (you may recall that this object name is why I prefer to use the term
“critical region” to refer to those code segments that require a CRITICAL_SECTION for mutually
exclusive access). A mutex is a kernel object accessed and managed through a HANDLE. The
CreateMutex() function will initialize a mutex object. To lock the mutex, call the function
WaitForSingleObject(); when the mutex handle is in the signaled state, the mutex is available
and the wait function will return. When a thread is finished with the mutex, ReleaseMutex()
unlocks the object to allow another thread to gain control. Windows mutexes, like other kernel
objects, can be shared between different processes to create mutually exclusive access to shared
resources.

Windows CRITICAL_SECTION objects function like mutexes, but since they are user space objects,
they are only accessible within the processes in which they have been declared. These objects
are initialized with the InitializeCriticalSection() function before use. When mutual
exclusion is required to share resources, place EnterCriticalSection() and

E x p l i c i t T h r e a d i n g 91

LeaveCriticalSection() calls around the critical region of code with a reference to an appropriate
CRITICAL_SECTION object as the parameter. Probably the more important advantage of using a
CRITICAL_SECTION is that the overhead of using this method of mutual exclusion will be
considerably smaller (faster) than that of using a mutex or other kernel objects.

Windows events send signals from one thread to another in order to coordinate execution.
Events are kernel objects and are manipulated by use of a HANDLE. Threads use one of the wait
functions to pause execution until the event is in the signaled state. The CreateEvent() function
initializes an event and selects the type of event: manual-reset and auto-reset. The
SetEvent() function will set either type of event to the signaled state. All threads waiting on a
manual-reset event, once it has been signaled, will return from the wait function and proceed.
Plus, any thread that calls a wait function on that event will be immediately released. No
threads will be blocked waiting on a signaled manual-reset event until a call to ResetEvent()
has been issued. In the case of auto-reset events, only one thread waiting, or the first thread
to begin waiting for the event, will return from the wait function, and the event will be
automatically reset to the nonsignaled state. Unlike condition variables in Pthreads, a signal to
a Windows event will persist until either it is reset or the required number of threads have
waited for the event and been released.

What Else Is Out There?
This is not all there is. There are many different options available for concurrent programming.
Some are dependent on the language that you’re using, whereas others are parallel
programming languages in their own right. A few of the more recent entries that I’ve heard
something about are Microsoft’s Task Parallel Library and Concurrency Runtime, Cilk++,
Haskell, Erlang, X10 (from IBM), Chapel (from Cray, Inc.), Fortress (from Sun Microsystems),
F#, Co-array Fortran, and threads in Java and C#. Plus, all the languages like CUDA (from
NVIDIA), Ct (from Intel), and OpenCL, are specifically designed for data parallel programming
on graphics processing units (GPU). Some of the other notable languages I’ve tried in my career
include occam, C*, and CM Fortran.

Lately it seems that every other university research professor is developing or has developed
a different library/language/methodology for parallel programming. And that’s a good thing.
The more ideas that are put forward, the better the chances are that we’ll end up with
something that is powerful, yet easy to use—maybe not the best, but something that most folks
will be able to get behind and support.

Domain-Specific Libraries
Simple Rule 4 recommends that we use threaded libraries whenever possible. Even though
the libraries I’m discussing here don’t allow you to directly implement threaded solutions, I
stuck this section in since it is related more to concurrent programming than software tools for

92 C H A P T E R 5 :   T H R E A D I N G L I B R A R I E S

analyzing programs. Two examples of such libraries are the Intel Math Kernel Library (MKL)
and Intel Integrated Performance Primitives (IPP). There are five distinct sections to the MKL:
Basic Linear Algebra Subroutines (BLAS), Linear Algebra Package (LAPACK), Discrete Fourier
Transforms (DFT), Vector Math Library (VML), and Vector Statistics Library (VSL). From these
first two sections, the amount of computation versus thread management costs limits threading
to the Level 3 BLAS routines along with select LAPACK and FFT routines. Other routines from
the VML and VSL sections are also threaded depending on the routine and processor that will
be used for execution. All threading within the MKL is done with OpenMP, and all routines
within the library are designed and compiled for thread safety.

The Intel IPP library contains a broad range of functionality. These areas include image
processing, audio and video coding, data compression, cryptography, speech coding and
recognition, and signal processing. Due to the number of functions within the IPP, separate
library linkable files support different processing areas. Dynamic libraries are threaded
internally; static libraries are not threaded. Whether or not a library version is threaded, all
functions within the IPP library are thread-safe.

Before you think I’ve been completely swayed by the dark side and have become just another
mindless corporate tool, let me point out some other examples of parallel or threaded libraries.
ScaLAPACK is a parallel and scalable version of LAPACK routines that relies on the Basic Linear
Algebra Communication Subroutines (BLACS) functions for distribution and management of
data as well as for communication. PLAPACK is a parallel linear algebra package from the
University of Texas at Austin. Besides implementing the library routines to take advantage of
parallel machines, this library can also be used from a higher level of abstraction without
sacrificing performance. The Numerical Algorithms Group (NAG) SMP Library is a version of
the NAG numerical libraries written for parallel execution on shared memory platforms.

Most of the scientific and technical libraries available for parallel computation that I’ve heard
about or used in the last 10–15 years have been designed for distributed-memory platforms
(e.g., PETsC, PINEAPL, ParMETIS). Threaded libraries are becoming more prevalent to take
advantage of ubiquitous multicore processors.

D o m a i n - S p e c i f i c L i b r a r i e s 93

C H A P T E R S I X

Parallel Sum and Prefix Scan

SUMMING THE ELEMENTS OF AN ARRAY OR FINDING ALL PARTIAL SUMS OF THE ELEMENTS in an
array are basic algorithmic problems. The solution to these problems is easy to describe in a
single sentence or two. The concurrent versions of these algorithms, known as parallel sum
and prefix scan (or parallel scan), are simple and easy to understand. Since they are so simple,
these problems have been extensively analyzed and are used as bellwether algorithms within
the parallel programming community. Description, design, analysis, and implementation of
these two algorithms will get our feet wet for the rest of the algorithms contained in the text.

Study of these two concurrent algorithms is all well and good, but if you can’t find a use for
them, you might think that reading through this chapter could be a waste of time. I’m sure
you can imagine cases in which you might need to find the sum of an array of items or figure
out the largest item within an array. These are examples of parallel sum. Prefix scan is a bit
more abstract and its use as part of another algorithm is less obvious. So, after going over the
design and implementation of these two concurrent algorithms, I’ll point out some other
algorithms where prefix scan is used.

Parallel Sum
You may need to compute the sum of all values within a given array. Example 6-1 shows a
serial code that will perform such a summation of the N elements within the integer array A.
After execution of the code, the sum variable will have the total sum of all elements from the
A array (assuming no overflow or other exception was encountered).

EXAMPLE 6-1. Serial summation of integer array

int sum = 0;
for (int i = 0; i < N; i++)
 sum += A[i];

The parallel sum operation can work with any associative and commutative combining
operation. For example, the operations of multiplication, maximum, minimum, and some
logical operations would all be appropriate. In a serial program, the commutative property of
the operation is not important, since the order with which the serial execution combines the
elements is the same each and every time. Nevertheless, to have any chance of performing the
computation concurrently, we rely on this property of the operation, since concurrent
execution does not impose a fixed schedule on the order of independent computations.
Throughout this chapter, I’ll talk about addition or the summing of elements as the combining
operation. Be aware that you can replace this with another appropriate operation when
needed.

Looking closer at the serial code, since the value of sum at any single iteration depends on all
the previous additions to sum, this might look like a situation that cannot be made concurrent.
Luckily, this is a special case of an induction variable where the purpose of the computation is

96 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

to “reduce” a collection of data into a single value. I’ve already told you that such a reduction
operation can be made concurrent, so let’s see how you can do it.

PRAM Algorithm

Imagine a complete binary tree with the same number of leaf nodes as there are elements in
the vector to be summed. If we assign a vector value to individual leaf nodes and make the
internal nodes of the tree correspond to the addition of child nodes, we can find the sum of all
the leaf node values by working up the tree and carrying out the addition operations.
Figure 6-1 shows an inverted binary tree with eight leaf nodes (squares) and assigned values.
The internal nodes (circles) hold the sums of the node’s children, and the root will have the
sum of all vector values.

3

8 7 16 10

2615

41

25 5 7 9 4 6

FIGURE 6-1. Binary tree illustration of parallel sum computation

Each addition within the same level of the tree is independent of all the other additions within
that level. This is where the concurrency of the algorithm is to be found.

For a PRAM model, if you have a processor for each element of the array (leaf node), you can
compute the parallel sum in a logarithmic number of steps. Example 6-2 shows the pseudocode
for this computation adapted from the Daniel Hillis and Guy Steele paper, “Data Parallel
Algorithms” (Communications of the ACM, 1986).

EXAMPLE 6-2. PRAM algorithm for parallel sum

for j := 1 to log_2(n) do
 for all k in parallel do
 if (((k + 1) mod 2^j) = 0) then
 X[k] := X[k - 2^(j-1)] + X[k]
 fi

P a r a l l e l S u m 97

 od
od

The parallel sum is done in-place (within the confines of the same array). Figure 6-2 shows
the progression of the code in Example 6-2 on an eight-element array X. The arrows for each
value of j point to the array element that receives the (partial) sum at each iteration of the
outer loop. The final sum will be in the highest indexed element, X[7].

3

j = 1

X: 5

+ + + +

2 5 7 9 4 6

3

j = 2

X: 8

+ +

2 7 7 16 4 10

3

j = 3

X: 8

+

2 15 7 16 4 26

3X: 8 2 15 7 16 4 41

[0] [1] [2] [3] [4] [5] [6] [7]

FIGURE 6-2. PRAM parallel sum algorithm example

A dash of reality

Can we use the PRAM algorithm for parallel sum (as given in Example 6-2) in a threaded code?
Even overlooking the assumption of having a number of processors equal to the number of
array elements available for any size array, a quick interleaving analysis of the algorithm with
just two threads reveals a problem. If you divide up the inner loop between the threads, one
of these can finish the assigned iterations and start up on the next set before the other thread
has completed. Data races or the use of incorrect intermediate results can occur. Before you
can compute any of the partial sums within a given iteration of the outer loop, you must be
sure that all the previous inner loop iterations have been completed.

The pseudocode in Example 6-2 has no explicit indication of how to achieve this correctness
property. The PRAM algorithm depends on having the execution of the body of the inner loop
executed on separate processors all at the same time in lockstep synchronization. With the
need for an unbounded number of processors and the reliance on lockstep execution, which
is well nigh impossible without specialized hardware and operating system combinations, the
PRAM algorithm isn’t of much practical use.

98 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

A More Practical Algorithm

Parallel sum is a reduction algorithm. The concurrent algorithm for a reduction is based on
data decomposition. To start, divide the data array into chunks equal to the number of threads
to be used. Next, assign each thread a unique chunk and sum the values within the assigned
subarray into a private variable. Finally, add these local partial sums to compute the total sum
of the array elements.

OpenMP and Intel TBB have direct support for these operations built into each threading
library. OpenMP includes a predetermined set of operations within the reduction clause that
you can use to combine data. TBB allows more flexibility in that you must write your own
code to sum items within chunks of data (inside the operator()) and how the results of those
reduced chunk values are combined (through the join method). Example 6-3 has a summation
code implemented with OpenMP.

EXAMPLE 6-3. Parallel sum using OpenMP reduction clause

int main(int argc, char* argv[])
{
 int sum = 0;
 int *X;
 int N;

 InitializeArry(X, &N);

#pragma omp parallel for reduction(+:sum)
 for (int i = 0; i < N; i++)
 sum = sum + X[i];

 printf("The sum of array elements is %d\n", sum);
 return 0;
}

After the initialization of the X array (InitializeArray(), not given), the loop worksharing
construct divides the iterations of the loop into chunks and assigns those chunks to threads in
the OpenMP team. The reduction clause ensures that each thread is allocated a properly
initialized local copy of the sum variable. This local copy collects the partial sums of assigned
iteration chunks. Once the threads have executed all the iterations, the reduction clause adds
together (based on the + operator in the clause) and stores the sum of the partial sums into the
global copy of the sum variable. The value within this global copy is then printed out.

The bulk of the work is done for you when using OpenMP or TBB for a reduction operation,
especially when pulling together the partial sums into the final summation. Thus, citing Simple
Rule 5, I recommend that you use these to implement your parallel sum algorithms whenever
possible.

Should you find yourself in the position of writing your own reduction computation, you will
need to divide the array elements and perform the final sums of partial sums explicitly. When

P a r a l l e l S u m 99

there are a small number of threads, use a single thread to do the final summation in serial.
This will require you to have the partial sums stored in globally accessible locations.
Example 6-4 includes Pthreads code to implement the simple summation application. To keep
things as uncomplicated as possible, I’ve set the number of threads to a fixed value
(NUM_THREADS). Details about how the data is initialized (InitializeArray()) are left out of this
code, too.

EXAMPLE 6-4. Parallel sum using POSIX threads and global partial sum storage

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

#define NUM_THREADS 4

int N; // number of elements in array X
int *X;
int gSum[NUM_THREADS]; // global storage for partial results

void *Summation (void *pArg)
{
 int tNum = *((int *) pArg);
 int lSum = 0;
 int start, end;

 start = (N/NUM_THREADS) * tNum;
 end = (N/NUM_THREADS) * (tNum+1);
 if (tNum == (NUM_THREADS-1)) end = N;
 for (int i = start; i < end; i++)
 lSum += X[i];
 gSum[tNum] = lSum;
 free(pArg);
}

int main(int argc, char* argv[])
{
 int j, sum = 0;
 pthread_t tHandles[NUM_THREADS];

 InitializeArray(X, &N); // get values into X array; not shown
 for (j = 0; j < NUM_THREADS; j++) {
 int *threadNum = new(int);
 *threadNum = j;
 pthread_create(&tHandles[j], NULL, Summation, (void *)threadNum);
 }
 for (j = 0; j < NUM_THREADS; j++) {
 pthread_join(tHandles[j], NULL);
 sum += gSum[j];
 }
 printf("The sum of array elements is %d\n", sum);
 return 0;
}

100 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

The main routine creates the threads that execute the Summation() function. Each thread first
finds the boundaries of the X array chunk that it will be assigned. These boundaries are stored
in local copies of start and end. The boundary computation requires that each thread be
assigned a unique, consecutive integer ID number, starting with 0. The thread ID is passed to
the thread via the single parameter allowed. The last thread (whose ID number is NUM_THREADS
– 1) must be sure to pick up the final elements of the X array, since the code uses integer
division. The if statement after the assignment of end will do this.

Once the boundaries are known, each thread loops over the chunk of X and sums those values
into a local integer. After processing a chunk, each thread will copy the value of the locally
computed partial sum into a unique global array element for the main thread to sum up into
the final total.

As for the main thread, after initializing the X array, a number of threads are created (I’ve used
the defined constant NUM_THREADS to set the number of threads in Example 6-4). Each thread’s
ID number is stored in a newly allocated integer and sent to the created thread through the
single parameter. Before termination, threads must be sure to free the memory allocated for
the thread ID to avoid a memory leak.

The main thread waits for each of the created threads to complete execution. Once a thread
has terminated, the main thread will know that the associated partial sum for that thread is
available in the global array and can be added to the overall sum variable. The total sum is
printed after all partial sums have been combined.

Astute readers will realize that once the data has been reduced to a number of partial sums
equal to the number of threads, you could use a concurrent algorithm, based on the PRAM
algorithm. We’ll take a look at another method for a reduction computation based more closely
on the PRAM algorithm in Chapter 7.

Design Factor Scorecard

How efficient, simple, portable and scalable is the parallel sum code described earlier? Let’s
examine the algorithm with respect to each of these categories.

Efficiency

The addition of code to compute chunk boundaries is overhead to the concurrent execution.
However, if the addition of two assignments and an if statement causes a noticeable
degradation of performance, the data chunks may not be big enough to warrant concurrent
execution. In this case, you need to increase the granularity of the chunks by reducing (or
completely eliminating) the number of threads used.

You can completely eliminate the need for computing chunk boundaries by starting each
thread at a different element of the array, based on thread ID, and accessing every fourth (or
NUM_THREADSth) element. The code change for this scheme is given in Example 6-5.

P a r a l l e l S u m 101

EXAMPLE 6-5. Computation loop modification to eliminate need for start and end

for (int i = tNum; i < N; i += NUM_THREADS)
 lSum += A[i];

This change introduces a need to share cache lines between cores with threads accessing every
fourth element (Example 6-4). However, since this will only involve read-access of the cache
data, there should be no false sharing penalty. Still, this modification will make use of only a
small set of items within a whole cache line. Thus, the time to read a full cache line will be
practically wasted due to the fact that not all of the data in each line is used by a thread.

There will be some false sharing potential with multiple threads updating different elements
of the gSum array. However, it is always better to have one possible false sharing incident per
thread than to have one per data item if the threads are updating a single shared global variable
for each addition (not to mention the multiple threads contending for the same
synchronization object). As an alternative, you could offset each element in gSum used by the
number of bytes in a cache line.

Simplicity

The two concurrent solutions here are very simple data decompositions of the original serial
code. It is straightforward to compute partial sums of chunks from the array and then add those
partial sums together into a final total.

While there appears to be a huge code explosion between the simple three-line serial version
in Example 6-1 and the Pthreads version, the ratio in this case is a bit lopsided due to the very
tiny amount of serial code that was used initially. Other algorithms that we will examine will
start with more code, and, in my experience, the absolute number of added lines for
implementing explicit threading will typically be close to the number of additional lines shown
in Example 6-4.

Portability

The Pthreads algorithm translates pretty easily to other explicit threading models. There is
nothing unique to Pthreads used here. The explicit threads algorithm uses the same idea as a
distributed-memory algorithm. Processes are assigned a chunk of data, the data is summed
locally, and the partial results are sent to a single process for final summation. If all processes
require the answer, the final answer must be broadcast to all the other processes.

Scalability

With increases in the amount of data, the algorithm will scale well. If the data size remains
fixed but the number of cores and threads increases, there will be a point (of diminishing
returns) where dividing up the data into smaller chunks for more threads will begin to yield
worse performance. TBB attempts to control the chunk size behind the scenes, while OpenMP
has the schedule clause to give the programmer some control. For an explicitly threaded

102 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

solution, you will need to determine the crossover point and build in limiting logic that controls
either the number of threads that can be created or the minimum chunk size allowed in order
to execute the parallel sum with multiple threads.

Prefix Scan
Prefix scan computes all partial sums of a vector of values. That is, the results of a prefix scan
will be a vector—the same size as the original vector—where each element is the sum of the
preceding elements in the original vector up to the corresponding position. Two uses of the
results of this algorithm are to find the longest sequence of 1s in a binary array (sequence) and
packing only the desired elements from an array (which I’ll demonstrate later in this chapter).
See Principles of Parallel Programming by Calvin Lin and Lawrence Snyder (Pearson
Education, 2008) or Selim G. Akl’s Parallel Computation: Models and Methods (Prentice Hall,
1997) for other uses of prefix scan.

Figure 6-3 shows an eight-element vector and the results of the prefix scan operation on that
vector.

3Original vector 5 2 5 7 9 4 6

3Inclusive prefix scan 8 10 15 22 31 35 41

0Exclusive prefix scan 3 8 10 15 22 31 35

FIGURE 6-3. Prefix scan examples

There are two versions of prefix scan: inclusive and exclusive. For an inclusive scan, the result
is the sum of all preceding values, as well as the value of the element in the position under
consideration. To compute the inclusive prefix scan of the fifth position in the vector, you need
to add 3 + 5 + 2 + 5 + 7 = 22. The exclusive version does not include the value of the vector
element at the position of interest. Thus, the exclusive scan result for the fifth position is
3 + 5 + 2 + 5 = 15.

As with parallel sum, the prefix scan operation can work with any associative combining
operation. Besides addition, you can also use the operations of multiplication, maximum,
minimum, and such logical operations as AND, OR, and eXclusive OR (but I’ll continue to
make reference to prefix scan using the addition operation). Unlike parallel sum, the combining
operation does not need to be commutative because of the fixed order used to combine
elements. Example 6-6 shows serial code to implement the inclusive prefix scan of an array of
N integers, storing the results in corresponding elements of the array prefixScan.

P r e f i x S c a n 103

EXAMPLE 6-6. Serial prefix scan computation of integer array

prefixScan[0] = A[0];
for (int i = 1; i < N; i++)
 prefixScan[i] = prefixScan[i-1] + A[i];

The code first stores the A[0] value into the prefixScan[0] slot to initialize the results array.
Subsequent iterations of the loop use the (i-1)th value of the results array added to the A[i]
value to compute the value to be stored in the prefixScan[i] element.

N O T E
If you want to have an in-place version of the serial inclusive prefix scan, simply replace the

prefixScan array with A. The exclusive version of the prefix scan is a bit more complicated,

but I’ll have a version of that later in the chapter.

Upon examination of the serial code in Example 6-6, you should recognize the use of induction
variables in the body of the loop. Unlike the parallel sum code, which used a single induction
variable throughout, this algorithm uses a different induction variable for each iteration, and
the value of that induction variable relies on the values of all the previously computed
induction variables. It certainly looks less likely that we’ll be able to create a concurrent solution
for prefix scan than we were for parallel sum.

If you’re familiar with TBB, you will know that one of the parallel algorithms included in the
library is parallel_scan. This algorithm can compute the prefix scan of an array of values with
multiple threads. So, citing Simple Rule 4, if you can use TBB and need a prefix scan operation,
then make use of the library functions already written and optimized (and skip to
“Selection” on page 112—of course, you never know what dollop of knowledge or juicy tidbit
I might drop over the next few pages, so you might want to keep reading).

PRAM Algorithm

For those of you still reading, let’s first take a look at how you can implement the prefix scan
operation on the PRAM model. In “Data Parallel Algorithms” (Communications of the ACM,
1986), Hillis and Steele recognized that in their parallel sum algorithm (Example 6-2), most of
the processors would be idle for most of the time. In fact, half of the processors would never
be used at all. Making good use of the idle processors enables machines to carry out the
computation of all partial sums in the same execution time as the parallel sum algorithm.

To illustrate this better utilization of processors, Figure 6-4 shows how data will be accessed
(arrows) and combined in-place for computing the prefix scan on an eight-element array.
Rather than showing the data, the figure shows the range of indexes that have been summed
(using bracket notation) within the array element.

104 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [0,1] [1,2] [2,3] [3,4] [4,5] [5,6] [5,7]

[0] [0,1] [0,2] [0,3] [1,4] [2,5] [3,6] [4,7]

[0] [0,1] [0,2] [0,3] [0,4] [0,5] [0,6] [0,7]

FIGURE 6-4. Example of PRAM computation for prefix scan

Before I give you the code for this operation, let’s examine the operation of the PRAM
algorithm by focusing on the slot of the array with index 5 and see how the prefix scan of the
preceding elements is computed in that slot. The initial value is simply the data that is stored
there (denoted by [5]). In the first step, the processor assigned to that position of the array will
read the current contents of the index 4 element and will add that value to the contents of the
index 5 slot, yielding the sum of the index 4 and 5 elements ([4,5]). The processor will then
read the current contents of the index 3 element and will add that value (the sum of the original
index 2 and 3 elements) to the contents of the index 5 slot. This will be the sum of the original
elements from index 2 through and including index 5 ([2,5]). In the next step (the final step
for eight elements), the processor will read the current contents of the index 1 slot and will
add this value to the contents of the index 5 slot, which gives us the sum of all elements indexed
from 0 through 5 ([0,5]). You can follow the arrows in the figure to see how each individual
sum is computed from one step to the next.

We know that each step illustrated in Figure 6-4 is completed before the next step begins
because the PRAM model works in lockstep execution. The algorithm assumes there is a
separate processor assigned to compute each element within the array. All processors will take
the same time to read the current contents of a lower-indexed slot, add the value found to the
current contents of the assigned array element, and store the result back into the assigned array
position. Thus, there is no need for explicit synchronization and we know there is no chance
of data races in which one processor attempts to read a value at the same time the assigned
processor is updating the contents of an array element.

The pseudocode for the PRAM inclusive prefix scan algorithm given in Example 6-7 is adapted
from Hillis and Steele’s “Data Parallel Algorithms.” The only difference between this code and

P r e f i x S c a n 105

the code in Example 6-2 is the if test for determining which processors are active in the inner
loop. This test uses the processor index (k) and determines whether looking back in the array
a number of slots (2 j-1) is still within the lower bound of the array. If it is, the value in that
lower indexed element is added to and stored in the current array element value.

EXAMPLE 6-7. PRAM algorithm for prefix scan

for j := 1 to log_2(n) do
 for all k in parallel do
 if (k ≥ 2^(j-1)) then
 X[k] := X[k - 2^(j-1)] + X[k]
 fi
 od
od

A less heavy dash of reality

Some interleaving analysis reveals that the practical problems we saw with the PRAM
algorithm for parallel sum will also be problems when trying to directly implement the prefix
scan algorithm from Example 6-7. We could simulate the PRAM algorithm after dividing the
array into chunks for a finite number of threads. However, we’d still need to synchronize access
to be sure data in lower indexed slots was read before it was updated. Also, we would need to
make sure all computation for each iteration of the outer loop was complete before threads
proceeded to the next outer loop iteration. This latter coordination task is further complicated
as the number of array slots requiring computation shrinks for each iteration of the outer loop.
In the last iteration, only half of the array elements are updated.

Looking back even further, the serial algorithm (Example 6-6) has far too many dependences
and can’t be directly adapted to a concurrent solution. If this is going to work concurrently,
we’ll need to invoke Simple Rule 8 and devise an equivalent algorithm that is more amenable
to concurrency.

A More Practical Algorithm

Taking a cue from the parallel sum implementation, we can also approach prefix scan as a data
decomposition design (there is no TBB version showing how to use the parallel_scan algorithm
here; you’ll have to look that one up yourself or wait until you get to the “Selection” section
of this chapter). We can divide the array into a number of (roughly) equal-sized chunks, one
per thread, and have each thread execute a serial prefix scan on the assigned chunk. Now
we’ve got a set of “partial” prefix scans, one per chunk. How does that help? To compute the
final answer for any one chunk, we need the sum of all the preceding chunks.

Luckily, the final element of an inclusive prefix scan is the total of all the elements in the array.
If we run an exclusive prefix scan over just those final elements (maybe after copying them
into an array), we will have the sums of all preceding chunks in the array location
corresponding to a chunk (thread). We can then simply have each thread add this sum of

106 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

preceding totals to all elements in the assigned chunk and compute the final prefix scan values.
Figure 6-5 gives a pictorial example of this three-step algorithm on 16 elements using 4 threads.

3 5 2 5 7 9 -4 6 7 -3 1 7 6 8 -1 2Original
vector

3 5 2 5 7 9 -4 6 7 -3 1 7 6 8 -1 2Divide into
chunks

3 8 10 15 7 16 12 18 7 4 5 12

15 18 12 15

0 15 33 45

6 14 13 151. Local prefix
sum

2. Exclusive
prefix sum

3 8 10 15 7 16 12 18 7 4 5 12 6 14 13 153. Add step 2
results to

corresponding
chunks 3 8 10 15 22 31 27 33 40 37 38 45 51 59 58 60

FIGURE 6-5. Prefix scan algorithm example

The first step (local prefix scan) and third step (adding the preceding chunk’s sum to local
chunk) can be done independently. The second step requires a prefix scan computation with
a number of elements equal to the number of threads. We could implement an adaptation of
the PRAM algorithm for this situation or take a hint from the parallel sum implementation and
do this second step in serial.

If we do the second step in serial, we don’t want to terminate the threads after completion of
the first step, since we would need to recreate them for the third step. Starting and stopping
threads is too much overhead and should be avoided if at all possible. Still, the serial thread
executing the second step needs to know when all the chunk totals have been computed before
it can start the prefix scan of the chunk totals. And, on that same side of the coin, the
computational threads must wait until the serial prefix scan of chunk totals is complete before
starting on the third step. Thus, we need some way to signal the completion of these two events.

Example 6-8 shows threaded code using Windows Threads and event synchronization objects
to implement an inclusive prefix scan. As before, to keep things simple, I’ve written code that
handles integers as the data on which to find the prefix scans, and set the number of threads
to a fixed value (NUM_THREADS). Details about how the data is initialized (InitializeArray()) are
omitted.

EXAMPLE 6-8. Prefix scan using Windows Threads

#include <windows.h>
#include <process.h>
#include <stdio.h>

P r e f i x S c a n 107

#define NUM_THREADS 4

int N, *A;
int inTotals[NUM_THREADS], outTotals[NUM_THREADS];
HANDLE doneStep1[NUM_THREADS];
HANDLE doneStep2;

unsigned __stdcall prefixScan(LPVOID pArg)
{
 int tNum = *((int *) pArg);
 int start, end, i;
 int lPrefixTotal;

 free(pArg);
 start = (N / NUM_THREADS) * tNum;
 end = (N / NUM_THREADS) * (tNum + 1);
 if (tNum == (NUM_THREADS-1)) end = N;

// Step 1
 for (i = start+1; i < end; i++)
 A[i] = A[i-1] + A[i];

 inTotals[tNum] = A[end-1];
 SetEvent(doneStep1[tNum]); //signal completion of Step 1

// wait for completion of Step 2
 WaitForSingleObject(doneStep2, INFINITE);

// Step 3
 lPrefixTotal = outTotals[tNum];
 for (i = start; i < end; i++)
 A[i] = lPrefixTotal + A[i];

 return 0;
}

int main(int argc, char* argv[])
{
 int i, j;
 HANDLE tH[NUM_THREADS];

 InitializeArray(A,&N); // get values into A array; not shown
// Create manual reset events initially unsignaled
 for (i = 0; i < NUM_THREADS; i++)
 doneStep1[i] = CreateEvent(NULL, TRUE, FALSE, NULL);
 doneStep2 = CreateEvent(NULL, TRUE, FALSE, NULL);

 for (i = 0; i < NUM_THREADS; i++) {
 int *tnum = new int;
 *tnum = i;
 tHandles[i] = (HANDLE) _beginthreadex(NULL, 0, prefixScan, (LPVOID) tnum, 0, NULL);
 }
// wait for Step 1 completion
 WaitForMultipleObjects(NUM_THREADS, doneStep1, TRUE, INFINITE);

108 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

// Step 2
 outTotals[0] = 0;
 for (j = 1; j < NUM_THREADS; j++)
 outTotals[j] = outTotals[j-1] + inTotals[j-1];

 SetEvent(doneStep2); //signal completion of Step 2

// wait for completion of Step 3
 WaitForMultipleObjects(NUM_THREADS, tHandles, TRUE, INFINITE);

 return 0;
}

What the main thread does

The main thread creates an array of event objects (doneStep1) for the computation threads to
use in signaling when they have completed the work in step 1. Also, a single event object
(doneStep2) is set up for the main thread to signal that it has completed the exclusive prefix
scan computation of the chunk totals. After the events are set up, the computation threads are
created and the process thread waits for all of the doneStep1 events to be in the signaled state.

The exclusive prefix scan computation for step 2 uses two arrays: one to hold the original data,
and one to hold the scan results. This makes the implementation simple, since it only requires
one line of code. This one line of code works because we preserve the original data even when
the corresponding result element is updated (I’ve included an in-place variation of this
exclusive prefix scan in Example 6-9).

Once the exclusive serial prefix scan is complete, the main thread signals the computational
threads that it is safe to begin step 3. The only thing left for the main thread to do is wait for
the termination of the computational threads; this indicates that the scan of the original array
is complete.

What the spawned threads are doing

Each computational thread first figures out which chunk is assigned to it using the thread ID
number sent as a parameter to the prefixScan() function and stored locally as tNum. This is done
in the same manner as the parallel sum code in Example 6-4. The threads compute the prefix
scan on the chunk of assigned data. The value from the final chunk element (the total of all
array elements within the chunk) is copied to the shared inTotals[tNum] slot. Since this
completes processing for step 1, the thread sets the event object doneStep1[tNum] and waits for
the signal that the main thread has completed step 2.

After receiving the doneStep2 signal, each computational thread copies the value from the
outTotals[tNum] slot and stores this value in the local lPrefixTotal variable. Each of the partial
prefix scan values from step 1 in the assigned chunk is updated with the addition of
lPrefixTotal to compute the final scan results. Termination of all threads clues in the main
thread to the fact that the computation is complete and that it can use the results as needed.

P r e f i x S c a n 109

N O T E
If you think back to the beginning of the prefix scan discussion, I stated that the combining

operation must be associative but does not have to be commutative. This is due to the

unambiguous order in which the results are combined. In “Data Parallel Algorithms,” Hillis

and Steele make note of this and point out that the code that does the combination within

their PRAM pseudocode is written in a specific order, namely:

X[k] := X[k - 2^(j-1)] + X[k]

where the values and previous results that occur in lower indexed elements always appear

on the left of the combining operator within the righthand side of the assignment statement.

Faithfulness to this format will preserve the correctness of the algorithm if you ever find

yourself using a noncommutative operator in place of the addition operation shown.

I’ve adhered to this ordering in all of the code presented in this chapter rather than using the

shortcut operator +=.

Design Factor Scorecard

How efficient, simple, portable, and scalable is the prefix scan code described earlier? Let’s
examine the implementation with respect to each of these categories.

Efficiency

As with the parallel sum implementation, the code to compute chunk boundaries is overhead.
The same analysis of chunk size applies here. Unlike the parallel sum implementation, the loop
code modification to assign alternate iterations to threads shown in Example 6-5 cannot be
used since the prefix scan algorithm relies on having contiguous chunks of data elements.

With multiple threads updating different elements of the inTotals array during the last part of
step 1, there is a chance for false sharing. Concurrent access to the outTotals is read-only, so
there should be no detriment from false sharing on that array in preparation for step 3.

If memory is tight and an additional totals array (outTotals) may be too much, you can use an
in-place serial version of exclusive prefix scan. Code for this algorithm is given in Example 6-9.

EXAMPLE 6-9. In-place exclusive prefix scan in serial

int nexT = Totals[0], curr;
for (j = 1; j < NUM_THREADS; j++) {
 curr = Totals[j];
 Totals[j] = nexT;
 nexT = nexT + curr;
}
Totals[0] = 0;

Only two extra variables (rather than an entire array) are needed to keep track of the next
prefix scan value (nexT) to be stored in the Totals array and to hold the current data value from

110 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

the array (curr) before that value is overwritten. The final step of the code sets the first element
in the array to 0.

Simplicity

Like parallel sum before, the concurrent solution in Example 6-8 is a data decomposition. This
is not a straightforward decomposition of the serial code, since there are three steps, with one
of those steps actually being a prefix scan computation across threads. Implementing
something closer in structure to the PRAM algorithm for step 2 might be possible, but, due to
the required synchronization to keep execution order, the code wouldn’t be as simple as the
serial version.

Even so, I think once you understand the three steps of the concurrent algorithm and what
they accomplish, the code is easy to understand and to modify for some other operation besides
addition. Lin and Snyder, in Principles of Parallel Programming, give an implementation for
an abstract parallel prefix scan method (as well as one for reduction). Their algorithm isolates
the combining operation of the scan and would allow you to easily reuse the code with a
different combining operation.

Portability

The Windows Threads algorithm translates pretty easily to other explicit threading models.
There is nothing uniquely Windows used here. You could implement this algorithm in a
distributed-memory environment, too, with some message-passing between steps to gather
data for the exclusive prefix scan of totals. The results of the exclusive scan are then scattered
back out to processes for local processing.

You could also use this algorithm under OpenMP. The API finds the number of threads (thread
ID number are required) and carries out the serial prefix scan of the Totals array under the
single pragma. In my opinion, if you have to go to the OpenMP API functions and use those
values to divide the data array into chunks, you have gone outside the realm of how best to
use OpenMP. If you’re going to go to that trouble, why not just write the code with an explicit
threading library? If you’ve got other parts of your application in OpenMP and want to keep
the entire application in OpenMP, then I’m OK with writing a small part of the code using
OpenMP as if it were explicit threads. (You’re free to do what you want, of course, I just ask
that you don’t tell me about it.)

Scalability

The prefix scan code given here is going to have the same scaling characteristics as the parallel
sum. With an explicit threads implementation, you’ll need to find where too little data in each
chunk causes the implementation performance to degrade below acceptable bounds.

P r e f i x S c a n 111

Selection
Studying parallel sum and prefix scan is instructive in its own right, but there are actually larger
algorithms that incorporate these operations. Selecting the kth-largest element from an
unsorted list is a good example. In this section I’ll describe serial and concurrent solutions for
this example algorithm and show how you can apply the parallel sum and prefix scan
operations.

One obvious solution is to first sort the elements of the list and then pick out the item in the
kth position. If you need to pull out different kth items multiple times, it might be worthwhile
to do the sorting. If, however, you only need to do this once, or if the list is updated between
selections, you can use an algorithm with a better asymptotic complexity than sorting, namely
O(n).

The Serial Algorithm

When I was first shown this algorithm, early in my computer science academic years, I
remember being flabbergasted at the simplicity of the idea and the insight it took to think of
this problem in the way that led to this solution. The crux of the algorithm is in finding the
median of a list. You will recall that the median of a data set is the item in the middle of
the set; half the data is smaller than the median element, and half the data is greater than the
median value. For a data set of n items, this median would be in the

position if the data were sorted.

The serial algorithm for selection is recursive and can be described with five algorithmic steps:

1. If the size of the data set to be used is less than some constant size, Q, sort the data and
return the kth element; otherwise, subdivide the data set into chunks of size Q and
whatever is left over.

2. Sort each chunk and find the median of each.

3. Recursively call the selection routine to find the median of the medians found in the
previous step.

4. Partition the data set into three subsequences: those whose elements are less than the
median of medians, those that are equal to the median of medians, and those that are
greater than the median of medians.

5. Determine which subsequence contains the kth element, from the sizes of the three
subsequences, and recursively call the selection routine on that subsequence. If the kth

element is not in the subsequence of smaller or larger items, it must be in the subsequence
equal to the median of medians, so just return the median of medians value.

112 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

The code given in Example 6-10 implements the algorithm just described as the
SequentialSelect() function. The code for two of the required support functions,
CountAndMark() and ArrayPack(), are given later in Example 6-11. From the analysis of Selim G.
Akl in The Design and Analysis of Parallel Algorithms (Prentice Hall, 1989), the value of Q can
be any integer greater than or equal to 5. I’ve chosen to define Q as 5 for my implementation.

EXAMPLE 6-10. Serial code to implement the selection algorithm

int SequentialSelect(int *S, int num, int k)
{
 if (num <= Q) return SortLessThanQ(S, num, k);

 int cNum = num/Q + 1;
 int *Medians = new int[cNum];
 int i = 0;
 for (int j = 0; j < num/Q; j++) {
 Medians[j] = SortSelect5(&S[i], 3); // find medians of subsequences
 i += Q;
 }
 int lastNum = num - (Q * (num / Q));
 if (lastNum) {
 int lastQ = Q * (num / Q);
 Medians[cNum-1] = SortLessThanQ(&S[lastQ], lastNum, (lastNum+1)/2);
 }
 else cNum--;

 int M = SequentialSelect(Medians, cNum, (cNum+1)/2);

 int leg[3] = {0,0,0};
 int *markS = new int[num];
 CountAndMark(S, markS, num, M, leg);

 if (leg[0] >= k) {
 int *sPack = new int[leg[0]];
 ArrayPack(S, sPack, num, markS, 0);
 return SequentialSelect(sPack, leg[0], k);
 }
 else if ((leg[0] + leg[1]) >= k) return M;
 else {
 int *sPack = new int[leg[2]];
 ArrayPack(S, sPack, num, markS, 2);
 return SequentialSelect(sPack, leg[2], k-(leg[0]+leg[1]));
 }
}

The parameters to the SequentialSelect() routine are the array of data to be selected from (S),
the number of elements in the array (num), and the selection index (k). For simplicity, I’ve made
S an array of integers. The first step is to determine whether there are more than Q items to be
searched. If not, the code calls SortLessThanQ() (not shown), which simply contains a switch
statement to select the handcoded sort routine for the specific values less than or equal to Q. If
the number of elements in the list is larger than Q, the number of Q-sized chunks is computed

S e l e c t i o n 113

(cNum) and an array to hold the median of each chunk is allocated (Medians). The
SortSelect5() routine (not shown) sorts each chunk and returns the median of the sorted data
(in The Art of Computer Programming, Volume 3: Sorting and Searching, Second Edition
[Addison-Wesley, 1998], Donald Knuth describes an algorithm that will sort five items with
only seven comparisons). If there is a leftover chunk of less than Q elements (lastNum), the
median of this chunk is found by calling SortLessThanQ().

Once all the medians of the chunks have been returned, the SequentialSelect() routine is called
recursively on the Medians array to find the median (M) of this sublist. To partition the original
list, the CountAndMark() routine (see Example 6-11) counts the number of elements that are less
than, equal to, and greater than M. These counts are stored in the leg array (named for less
than, equal to, and greater than). Besides counting, the markS array is filled with a value to
denote into which partition the corresponding elements in the S array would fall.

Since we have the counts of each partition, it is easy enough to figure out which of the three
partitions the kth element will be found. We don’t have to actually divide the original list into
the three partitions and incur a movement cost from all elements: it will be enough to gather
the elements of the partition holding the item of interest into a new array (sPack). You will
only have to do this data packing if the element is in the “less than” or “greater than” partition.
The ArrayPack() function (see Example 6-11) moves the appropriate elements based on the
markS array contents. The packed array is then sent to the SequentialSelect() routine to find
the item being selected in the smaller data set.

Example 6-11 contains the code for the CountAndMark() and ArrayPack() support functions.

EXAMPLE 6-11. Support functions for serial selection algorithm

void CountAndMark(int S[], int Marks[], int num, int median, int leg[3])
{
 for (int i = 0; i < num; i++) {
 if (S[i] < median) {Marks[i] = 0; leg[0]++;} //less than
 else if (S[i] > median) {Marks[i] = 2; leg[2]++;} // greater than
 else {Marks[i] = 1; leg[1]++;} // equal to
 }
}

void ArrayPack(int S[], int sPack[], int num, int Marks[], int scanSym)
{
 int j = 0;
 for (int i = 0; i < num; i++)
 if (Marks[i] == scanSym) sPack[j++] = S[i];
}

The CountAndMark() function takes an array of data to be partitioned (S), the array that will hold
a notation of which partition the corresponding element from S would be assigned (Marks), the
number of elements in the first two parameter arrays (num), the value of the median that
determines the three partitions (median), and the leg array to hold the counts of the number
of elements that are less than, equal to, or greater than median. For each element of S, this

114 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

function notes that element’s relation to the median in the Marks array and increments the
appropriate element of the leg array. Notice that the function computes three sums based on
the contents of an array.

The ArrayPack() function takes a list of elements (S) and an array of items, noting which
partition the elements from S should be assigned (Marks). Everywhere the Marks element and
the scanSym match, the corresponding element from S is packed into sPack. While it may not be
obvious, you can do this operation with a prefix scan of the Marks array. I’ll show you how
that’s done in the next section.

I hope you can see that this algorithm works by using the median of medians to partition the
data into three groups and then identifying the partition in which the kth element would be
found. To prove that the algorithm runs in linear time, we need to demonstrate that at least
30% of the data will be in the partition that does not contain the item of interest. This is
illustrated in Figure 6-6.

Columns sorted by median

Elements sorted
within each

column
Medians of
each column

FIGURE 6-6. Selection diagram

Figure 6-6 contains 11 subsequences of 5 elements each. The 5 elements in each subsequence
have been sorted. For the sake of the figure, assume that I’ve arranged these subsequences in
sorted order by their median value. We can quickly identify which element would be the
median of medians (shown as a star in the figure). The circled collection of elements is the set
of items known to be less than or equal to the median of medians. Thus, if the element being
sought through selection is greater than the median of medians, we are guaranteed to be able
to eliminate at least 3/5 of half (or 30%) of the data for each recursive call in the final step of
the algorithm. We can make the same claim if the item is smaller than the median of medians
by shifting the gray box to surround the items in the lower-right corner of the elements.

If you’re interested in the details of a more rigorous proof of runtime for this serial algorithm,
see Akl’s The Design and Analysis of Parallel Algorithms or Fundamentals of Algorithmics
(Prentice Hall, 1996) by Gilles Brassard and Paul Bratley.

The Concurrent Algorithm

Three points within the serial algorithm contain independent operations: the determination
of the medians from each of the Q-length subsequences, the counting and marking of elements

S e l e c t i o n 115

according to the partitions defined by the median of medians, and the use of the prefix scan
operation to pack the sPack array with the items from the partition containing the kth element.
I’ll discuss each of these in turn and show you how to transform the serial code to a concurrent
equivalent using TBB.

I’ve chosen to use TBB because it contains the parallel_scan algorithm, which makes it easier
to implement the array packing. Also, the points of concurrency are separated by some serial
code. Thus, using TBB allows us to construct the concurrency at those points that can be made
concurrent and to ensure concurrent operations are completed before proceeding to the next
step of the algorithm. OpenMP would give us the same synchronization of threads between
parallel regions, but without a prefix scan operation, we’d have had to write one by hand. An
explicit threads solution would require us to incorporate the logic to do the execution order
synchronization. I’m going to wait until Chapter 7 before giving details and an example that
illustrates what can be done with explicit threads that need to coordinate execution order of
tasks within threads.

Before we examine each of the changes for concurrency in depth, let’s look at the changes to
the overall selection function, ParallelSelect(). This code segment is shown in
Example 6-12. I’ve left out the required TBB include lines. You can use this as an exercise to
determine whether you can identify all the include files that are needed when you implement
concurrent codes with TBB.

EXAMPLE 6-12. ParallelSelect() code

int ParallelSelect(int *S, int num, int k)
{
 if (num <= Q) return SortLessThanQ(S, num, k);

 int cNum = num/Q + 1;
 int *Medians = new int[cNum];

 parallel_for(blocked_range<int>(0, num/Q), FindMedians(S, Medians), auto_partitioner());

 int lastNum = num - (Q * (num / Q));
 if (lastNum) {
 int lastQ = Q * (num / Q);
 Medians[cNum-1] = SortLessThanQ(&S[lastQ], lastNum, (lastNum+1)/2);
 }
 else cNum--;

 int M = ParallelSelect(Medians, cNum, (cNum+1)/2);

 int *markS = new int[num];
 CountAndMark camBody(S, markS, M);
 parallel_reduce(blocked_range<size_t>(0,num), camBody, auto_partitioner());

 int numLessEqual = camBody.leg.less + camBody.leg.equal;
 if (camBody.leg.less >= k) {
 int *sPack = new int[camBody.leg.less];
 ArrayPack(S, sPack, num, markS, 0);

116 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

 return ParallelSelect(sPack, camBody.leg.less, k);

 }
 else if ((numLessEqual) >= k) return M;
 else {
 int *sPack = new int[camBody.leg.greater];
 ArrayPack(S, sPack, num, markS, 2);
 return ParallelSelect(sPack, camBody.leg.greater, k-(numLessEqual));
 }
}

The basic structure of the concurrent code is the same as the serial version from
Example 6-10. The for loop that finds the set of medians of the subsequences has been replaced
by calling the parallel_for algorithm on the FindMedians class (defined in Example 6-13). After
the median of medians (M) is determined, a parallel_reduce algorithm on the CountAndMark class
(defined later in Example 6-14) counts the number of elements in the three partitions (in
relation to the value of M) and marks which partition each element belongs to in the markS array.
The partition of interest is packed into the sPack array by calling the ArrayPack() function
(defined later in Example 6-15). This function will use the parallel_scan algorithm to identify
the elements that need to be gathered into the sPack array, and a parallel_for call will pack
the relevant items into the array. If the kth item is equal to the median of medians, this value
is immediately returned instead.

Finding the medians of subsequences

The code for the FindMedians class is shown in Example 6-13. The class includes the required
methods for TBB to divide up the tasks and assign them to threads through the parallel_for
algorithm.

EXAMPLE 6-13. FindMedians class definition

class FindMedians {
 int *S;
 int *M;

public:
 void operator()(const blocked_range<int>& r) const {
 int i, j;
 for (j = r.begin(); j < r.end(); j++) {
 i = j * Q;
 M[j] = SortSelect5(&S[i], 3); // find medians of subsequences
 }
 }

 FindMedians(int *_S, int *_Medians): S(_S), M(_Medians){}

 FindMedians(FindMedians& x, split): S(x.S), M(x.M) {}
};

S e l e c t i o n 117

This is all pretty straightforward. The body of the loop simply calls the serial SortSelect5()
function to sort the five (from Q) elements of the subsequence. If the final chunk has fewer
than Q elements, the median selection of that last chunk is done in the ParallelSelect() routine
immediately following parallel_for.

One difference between this loop and the corresponding loop from the serial code is that the
serial code loop uses i as an induction variable (incremented by Q each iteration). For the
concurrent version, I reconfigured the code to compute the value of i based on the value of
j in each iteration, which eliminated the induction dependence. Did you notice the range given
to the parallel_for of this step in Example 6-12 was (0, num/Q)? This makes an iteration
independent of the other iterations and allows TBB to divide them up into independent tasks.

Counting and marking elements for partitions

The LEG and CountAndMark classes are shown in Example 6-14. The LEG class, used in place of the
three-element leg array from the serial code, holds the number of elements that are less than,
equal to, and greater than the median value. The CountAndMark class defines the methods to find
the number of elements within the three partitions and to determine the partition of each
element. The TBB parallel_reduce algorithm is used on the CountAndMark class.

EXAMPLE 6-14. LEG and CountAndMark classes

class LEG {

public:
 int less, equal, greater;

 LEG(): less(0), equal(0), greater(0) {}
};

class CountAndMark {
 int *S;
 int *Marks;
 int median;

public:
 LEG leg;

 void operator()(const blocked_range<size_t>& r) {
 for (size_t i = r.begin(); i != r.end(); ++i) {
 if (S[i] < median) {Marks[i] = 0; leg.less++;}
 else if (S[i] == median) {Marks[i] = 1; leg.equal++;}
 else {Marks[i] = 2; leg.greater++;}
 }
 }

 void join (const CountAndMark& y) {
 leg.less += y.leg.less;
 leg.equal += y.leg.equal;
 leg.greater += y.leg.greater;
 }

118 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

 CountAndMark(int *_S, int *_Marks, int _median):
 S(_S), Marks(_Marks), median(_median) {}

 CountAndMark(CountAndMark& x, split):
 S(x.S), Marks(x.Marks), median(x.median) {}

};

Not one, not two, but three separate parallel sums are computed with the CountAndMark class.
These sums are kept in the three fields of the LEG object. You can see that the join method in
Example 6-14 adds the less, equal, and greater partial sums together after threads have gone
through all elements in assigned chunks.

The operator() computes the partial sums for each of the three partition choices. The if-then-
else tests determine which partial sum is incremented in each loop iteration. In addition, the
corresponding Marks array elements are assigned a notation value to indicate in which partition
the element under scrutiny belongs. The Marks array’s actual parameter will be used in the
ArrayPack() function to identify which elements from the original array are in the desired
partition.

The ArrayPack() function

From the point of view of the ParallelSelect() function, the ArrayPack() function does nothing
different than it did in the serial version. The concurrent version of ArrayPack() is shown in
Example 6-15. The support classes, PackingScan and PackingMove, are shown later in Examples
6-16 and 6-17, respectively.

EXAMPLE 6-15. ArrayPack() function

void ArrayPack(int S[], int sPack[], int num, int Marks[], int scanSym)
{
 int *scanIdx = new int[num];
 PackingScan body(scanIdx, Marks, scanSym);

 parallel_scan(blocked_range<int>(0,num), body, auto_partitioner());

 if (scanIdx[0]) sPack[0] = S[0]; // move if first element is marked
 parallel_for(blocked_range<int>(1,num), PackingMove(scanIdx,sPack,S),
 auto_partitioner());
}

The Marks and scanSym parameters identify the elements that are to be moved from the S array
to the sPack array. A prefix scan recognizes the elements to be moved and computes the index
where they are to be relocated within sPack. I’ve used the TBB parallel_scan algorithm to
accomplish this. The actual movement is done concurrently through a parallel_for after the
first element if checked and moved, if needed. See the sidebar “Array Packing with Prefix
Scan” for information on using prefix scan to pack arrays.

S e l e c t i o n 119

ARRAY PACKING WITH PREFIX SCAN
Given an array of data elements and a corresponding “mark” array that indicates some elements as
being of interest (assuming 1 indicates interest in the data element and 0 indicates no interest), the
task is to gather all the marked elements into a contiguous range of elements within an array. A prefix
scan of the binary array of marks is first computed. From the results of this computation, the set of
originally marked elements can be identified by the change in value of a mark element and the
immediate prior element (i.e., the value in the [i] position is one greater than the value in the
[i-1] position). The value of the scanned mark array—for each marked element—directly
determines the index within the packed array to which the marked element will be copied.
Figure 6-7 shows an example of the computation.

3 5 2 5 7 9 -4 6 7 -3 1 7 6 8 -1 2Original data array

1 0 1 0 0 0 1 0 0 1 1 0 0 0 1 1Marks array(a)

(b)

(c)

1 1 2 2 2 2 3 3 3 4 5 5 5 5 6 7Marks array
after prefix scan

3 5 2 5 7 9 -4 6 7 -3 1 7 6 8 -1 2Data rray

1 1 2 2 2 2 3 3 3 4 5 5 5 5 6 7Marks array
after prefix scan

3 2 -4 -3 1 -1 2Packed array

FIGURE 6-7. Prefix scan to pack an array

Figure 6-7 (a) shows an array of 16 integers (labeled “Original data array”) and an array of “Marks”
identifying those elements whose value is less than five (1) and greater than or equal to five (0).
Figure 6-7 (b) is the Marks array after an inclusive prefix scan has been run on the binary values.
You can see from Figure 6-7 (c) that the elements from the original array that are less than five in
value are copied into contiguous elements of the Packed array via the results of the prefix scan. If
the first element of the Marks array is 1, the first element (3 in this example) was an originally marked
item and needs to be moved into the Packed array. For every other element of the Marks array, if the
value is different from the value in the element to the immediate left, the corresponding item from
the Data array is moved into the Packed array (shown via the arrows in the figure). The index of the
slot in the Packed array to receive a data item is the value of the Marks array (minus 1 for 0-based
array indexing).

120 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

If you need to pack the marked elements and unmarked elements in-place, you can use the following
steps after running the prefix scan of the Marks array:

1. Allocate a separate integer array that is equal in size to the number of data elements, initialized
to 1 (I am assuming the size of the data elements is large enough that this allocation is relatively
small). This array will hold the destinations for each data element. The first element from the
Marks array that corresponds to the lowest indexed nonmarked data element is assigned a
value that is one greater than the number of marked elements.

2. Copy the negative of the destination indexes for all marked elements from the scanned array
into the destination array.

3. Run a prefix scan of only the positive elements (the lowest-indexed nonmarked element’s value
and all the initial 1 values) within the destination array. That is, treat the negative values as 0,
but don’t change them.

4. Use the absolute values of destination array elements to move each element from its current
location to the index location in the array given in the corresponding element of the destination
array. Be careful, though; this mass movement of data is easy to do concurrently using a PRAM
with a number of processors equal to the number of items, but will be much trickier with a finite
number of threads and cores.

If you can get away with a serial scan, you can just use the original Marks array, but you will need to
identify the unmarked data elements and treat these as if the value 1 were stored there in order to
compute destination index values.

Once you know the destination indexes, you can move data elements from the original array
to the packed array concurrently. Copying data from one memory location to another doesn’t
rely on any other copy operation, unless there is a potential for conflict at the receiving
locations. The indexes for receiving a data item are precomputed, and you can see that they
are all going to be unique, thus, no data races.

The PackingScan class in Example 6-16 sets up the TBB class requirements to compute the prefix
scan on the Marks array. The PackingMove class shown later in Example 6-17 gives the class
declarations to pack the data items concurrently from the selected partition.

EXAMPLE 6-16. PackingScan class

class PackingScan {
 int sum;
 int* const y;
 const int* const x;
 const int symbol;

public:

 template<typename Tag>

S e l e c t i o n 121

 void operator()(const blocked_range<int>& r, Tag) {
 int temp = sum;
 for (int i = r.begin(); i < r.end(); ++i) {
 if (x[i] == symbol) temp++;
 if(Tag::is_final_scan())
 y[i] = temp;
 }
 sum = temp;
 }

 PackingScan(int y_[], const int x_[], const int sym_) :
 sum(0), x(x_), y(y_), symbol(sym_) {}

 PackingScan(PackingScan& b, split) :
 sum(0), x(b.x), y(b.y), symbol(b.symbol) {}

 void reverse_join(PackingScan& a) {sum = a.sum + sum;}

 void assign(PackingScan& b) {sum = b.sum;}
};

The PackingScan class is based directly on the parallel_scan example found in the Intel TBB
example codes. The only change, besides the logical parameter list, is that a test for whether
or not the symbol in the x array (Marks in Example 6-15) is equal to the symbol identifying the
desired partition. This test is in the operator() definition. Since the x array contains three
different values, we need to use this as a logical binary array. That is, if the value in the x array
matches the symbol being examined, the value is to be treated as if it were a 1; otherwise, if
the symbol doesn’t match the contents of the array being scanned, that element is treated as
a 0. When there is a match, the temp value is incremented (as if adding 1 to the running scan
total). If there is not a match, the temp value is left unchanged (as if adding 0 to the running
total). During the final scan phase, which is denoted by the value of Tag, this running sum
value is stored in the scan’s output array (y).

EXAMPLE 6-17. PackingMove class

class PackingMove {
 const int *scanIdx;
 int *sPack;
 const int *S;

public:
 void operator()(const blocked_range<int>& r) const {
 for (int i = r.begin(); i < r.end(); i++) {
 if (scanIdx[i-1] != scanIdx[i])
 sPack[scanIdx[i]-1] = S[i];
 }
 }
 PackingMove(const int sIdx_[], int sPack_[], const int *S_) :
 scanIdx(sIdx_), sPack(sPack_), S(S_) {}
 PackingMove(const int sIdx_[], int sPack_[], const int *S_, split) :
 scanIdx(sIdx_), sPack(sPack_), S(S_) {}
};

122 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

Finally, you can use the PackingMove class with the parallel_for algorithm call from within the
ArrayPack() function (Example 6-15). You can use the results of the prefix scan to identify
which elements are to be moved and where to copy the items into the packed array. In the
operator() code in Example 6-17, the value of each element in the scanned array (scanIdx) is
compared to the value of the preceding element. If these two elements are different, the value
of the element minus 1 is used to index the packed array (sPack) slot that will receive the value
being copied (from S). We know that each destination is given to only one element from the
S array, so there are no conflicts or data races.

Once the elements from the appropriate partition are packed, the ArrayPack() function returns
and a recursive call to ParallelSelect() with this new partition and the value of k, adjusted as
needed, is executed.

Some Design Notes

Rather than breaking down the Selection code in terms of efficiency, simplicity, portability,
and scalability, I just want to conclude with some general design comments. All that I’ve said
so far about these topics in reference to the parallel sum and prefix scan algorithms will apply
to the use of those algorithms within the examples.

The simple algorithms for parallel sum and prefix scan are merely the basis for the steps needed
in the selection algorithm. Rather than a single sum, the CountAndMark class ran three separate
sums simultaneously. Also, the scan operation needed to interpret the data values and compute
with logical binary equivalents based upon the value of each element. This sort of algorithm
transmogrification is nothing new. Programmers routinely take the concept of an algorithm
and reshape it to fit the current needs of the application they are working on. The trick, of
course, is being able to determine which base algorithm is the best to modify.

N O T E
Transmogrification is the act of changing into a different form or appearance. I’ve liked this

word ever since seeing the misadventures caused by writing “Transmogrifier” on a cardboard

box in the “Calvin and Hobbes” comic strip.

A Final Thought
I don’t mean to use PRAM algorithms as the basis for all future algorithms in this book. I’m
trying to present you with information that is more practical than theoretical. The parallel sum
and prefix scan algorithms are quite easy to implement on a PRAM, though. I wanted to give
you a taste of what you might face if you pick up another parallel algorithms book that uses
PRAM implementations of the algorithms. Assuming you’re not a computer science graduate,
this exposure will better equip you as far as how to interpret those algorithms and what steps
you may need to go through to adapt them into practical code. While it should be possible to

A F i n a l T h o u g h t 123

simulate the unbounded number of processors of a PRAM algorithm with a finite number of
threads and cores, you must be aware of the assumptions that are built into the PRAM model
and be ready to deal with them. Chapter 7 includes a more concrete example of issues that
you might face when adapting PRAM algorithms.

124 C H A P T E R 6 :   P A R A L L E L S U M A N D P R E F I X S C A N

C H A P T E R S E V E N

MapReduce

MAPREDUCE IS AN ALGORITHMIC FRAMEWORK , LIKE DIVIDE-AND-CONQUER or backtracking,
rather than a specific algorithm. The pair of operations, map and reduce, is found in LISP and
other functional languages. MapReduce has been getting a lot of buzz as an algorithmic
framework that can be executed concurrently. Google has made its fortune on the application
of MapReduce within a distributed network of thousands of servers (see “MapReduce:
Simplified Data Processing on Large Clusters” in Communications of the ACM [2008] by Jeffrey
Dean and Sanjay Ghemawat), which has only served to heighten awareness and exploration
of this method.

The idea behind map is to take a collection of data items and associate a value with each item
in the collection. That is, to match up the elements of the input data with some relevant value
to produce a collection of key-value pairs. The number of results from a map operation should
be equal to the number of input data items within the original collection. In terms of
concurrency, the operation of pairing up keys and values should be completely independent
for each element in the collection.

The reduce operation takes all the pairs resulting from the map operation and does a reduction
computation on the collection. As I’ve said before, the purpose of a reduction is to take in a
collection of data items and return a value derived from those items. Parallel sum (from
Chapter 6) is an example of a reduction computation. In more general terms, we can allow the
reduce operation to return with zero, one, or any number of results. This will all depend on
what the reduction operation is computing and the input data from the map operation.

Before looking at the implementation and other details, let’s look at an example of MapReduce
in action. Consider the task of counting the number of vowels and consonants in the following
sentence:

The quick brown fox jumps over the lazy dog.

In my head, I run through the sentence, character by character, once to count the consonants
and then again to count the vowels. The results would then be two integers: the number of
vowels (12) and the number of consonants (23). Did you only count 11 vowels? Since “lazy”
has two syllables, which requires two vowel sounds, there must be at least two vowels. Thus,
“y” is doing duty as a vowel in this sentence. Example 7-1 has pseudocode of the MapReduce
operation that would compute these values. For this example, S is the string of characters
(array) holding the sentence.

EXAMPLE 7-1. MapReduce pseudocode example

// Map
 for i = 1 to length(S) {
 if (S[i] is a consonant)
 generate_pair(key[i]=S[i], value[i]=1);
 else
 generate_pair(key[i]=S[i], value[i]=-1);
 }

126 C H A P T E R 7 :   M A P R E D U C E

// Reduce
 cCount = 0; vCount = 0;
 for i = 1 to length(S) {
 if (value[i] > 0) cCount += value[i];
 else vCount += abs(value[i]);
 }

For the given data set, S, the MapReduce solution first maps a value to each letter in order to
create 35 key-value (letter-integer) pairs. The choice of values depends on whether the letter
is a consonant (1) or a vowel (−1). The reduction operation will take each key-value pair and
add the value into one of two counters based on the type of letter contained in the key.

N O T E
We will need some way to identify “y” as a vowel. This identification will need to influence

the key-value pair created in the map phase so that the reduce computation can add the

associated value to the correct counter.

If we wrote code for this letter-counting operation in serial, we could have simply examined
each letter in turn and incremented the proper counter. In the (serial) MapReduce variation
(Example 7-1), we’re required by the framework to use the values associated with the keys in
the reduction computation. While it may seem to be more work, this difference creates the
situation where the data is divorced from the algorithm and makes the reduction computations
more independent.

Map As a Concurrent Operation
Look back at the pseudocode of the vowel/consonant counting algorithm in Example 7-1. Can
you see that the creation of each key-value pair in the map phase would be independent of
every other pair creation? Simply divide the letters among threads and create key-value pairs
for each letter. One goal I would urge you to keep in mind when using MapReduce is to make
the reduction computation as simple as possible. This is why the algorithm in Example 7-1
decided the category of each letter in the map phase.

An alternate mapping would assign a value of 1 to each key (character) and let the reduce
phase decide whether the key is a vowel or consonant. The context of the keys that exists in
the map phase may not be available when the reduction computation is executed. Or, if not
unavailable, it may require extra data to preserve the context and correctly process values in
the reduction. Determining whether to label “y” as a consonant or a vowel requires the context
of the word itself. If the map and reduce operations were in different functions and we used
the alternate mapping of 1 for all keys, we would need to send the reduce function the context
(the sentence) in order to classify the “y” properly.

M a p A s a C o n c u r r e n t O p e r a t i o n 127

Just to hammer one more nail into this idea, consider the classic MapReduce example of finding
pages from a document (or set of documents) that contain a key phrase or word of interest.
Since we might not be able to find the exact phrase on any pages that we want to search, we
can devise a search-rating scheme that could rank pages that might have some subset of words
in our phrase. For example, pages containing the exact phrase will be given the highest rating,
pages that contain a subphrase (subset of words from the original phrase in the same order and
next to each other) will be given slightly lower ratings, and pages that have disjointed words
from the phrase will be given even lower ratings. For the final results of this example, we could
specify the output as a list of the 20 pages with the highest scores.

The mapping computation should create key-value pairs with a pointer to one page of the
document(s) as the key and the search rating of that page as the value. The rating of each page
with regard to the search phrase is completely independent of rating any other page. The reduce
phase now simply selects the 20 pages with the highest scores.

Implementing a Concurrent Map

How do you implement the map phase for concurrent execution? I’m sorry to say that I can’t
tell you, because each application that uses MapReduce will likely be different. So, the details
are going to be up to you and will be based on the computational needs of the code. However,
I can give you some general guidelines.

Whenever you find MapReduce applicable, the mapping operation will always be a data
decomposition algorithm. You will have to turn a collection of data into key-value pairs. The
items from the collection of data may require some “massaging” to determine the consequent
key value. Or the map might simply attach a key to the value, or vice versa if the data is to be
used as a key.

Whatever processing needs to be done in the map phase, you must design it with the reduce
phase in mind. By doing more work in the map phase, you lessen the amount of work needed
in the reduction operation and make it easier overall to write and maintain the MapReduce
algorithm. The best reduce is going to be a single operation that you can apply to both individual
elements and partial reduction results (if the reduce algorithm uses them). Writing a two-stage
reduction (e.g., deciding on the type of a letter and adding a value to the right counter) can
needlessly complicate your concurrent implementation.

Since the mapping operation on individual elements is independent of the computation on
any other data item (Simple Rule 1), there won’t be any data races or other conflicts. Of course,
there will always be the exception that will prove me wrong on this. If you find that
synchronization is necessary to avoid a data race, reexamine the mapping computation to see
whether you should handle that data race in the reduce phase. Also, you may find that
MapReduce is not the best algorithm for the problem you are trying to parallelize.

Finally, be aware of load balancing issues in the map computations. If you have something as
simple as attaching a count value to a data item key (e.g., the letter counting example), then

128 C H A P T E R 7 :   M A P R E D U C E

all of the individual map operations will take about the same amount of time, and you can
easily divide them up with a static schedule. If you have a case where the computation time
on individual elements will vary (e.g., finding key words and phrases within documents of
different sizes), a more dynamic schedule of work to threads will be best.

Reduce As a Concurrent Operation
As I recommended in the previous chapter, if you have the chance, use either OpenMP or Intel
TBB to do reduction computations. All of the grunt work and coordination of threads and
partial values goes on “behind the scenes.” Why would you want to do any heavy lifting if you
don’t have to? Plus, making use of code that is already written and debugged will give you
more of a warm fuzzy feeling about your concurrent application.

If you don’t have the option of using the reduction algorithms built into TBB or OpenMP, you
will need an explicit threads solution. Example 6-4 includes a handcoded reduction for
summing up all the items within an integer array. You can use this as a model for implementing
reduce when there are few threads.

For this chapter, though, I want to present an alternative that doesn’t use the serial processing
at the final step to combine the partial results from the previous independent computations.
Let’s again take the summing of all elements from an array as the specific problem to be solved.
As with the code in Example 6-4, we’ll use Pthreads as the explicit threading library for
implementation.

Handcoded Reduction

To get started, each thread working on the reduction is assigned a nonoverlapping chunk of
the overall data set. Any of the previously discussed methods that ensures all of the data are
assigned will work. A static division of data is best. Next, each thread calculates the sum of all
the items assigned. This will yield a number of partial sums equal to the number of threads.
At this point, we can use the PRAM version of the parallel sum algorithm presented in
Example 6-2 (one thread per data item to be summed). However, since we probably don’t have
lockstep execution of threads built into the hardware, we will need to coordinate the threads’
executions on the data and with each other.

As in Example 6-4, we will store the partial sums in separate elements of a global array. Threads
use the assigned ID for the index into the global array gSum. We will compute the final sum
concurrently using the global array data. The first element within the gSum array (index 0) will
hold the computed total for the elements of the original array. Figure 7-1 shows a
representation of the concurrent computations that we will need to take the partial sums and
add them together for the final answer.

R e d u c e A s a C o n c u r r e n t O p e r a t i o n 129

3gSum

gSum

5

+ + + +

2 5 7 9 4 6

8

Add consecutive 20

element pairs

Add consecutive 21

element pairs

Add consecutive 22

element pairs

5

+

+

+

7 5 16 9 10 6

15 5 7 5 26 9 10 6

41 5 7 5 26 9 10 6

[0] [1] [2] [3] [4] [5] [6] [7]

FIGURE 7-1. Reduction computation

Each array displayed in Figure 7-1 represents the contents of the gSum array after a round of
computation. The arrows indicate where data is read from and where the results are stored in
each round. The plus sign (+) within the circle is the combining operation (addition for this
example) used in the reduction. The grayed numbers simply indicate that the data within that
element of the array is no longer needed in further rounds of computation. For brevity, I’ve
limited the example to eight threads. I think that once you’ve seen how two or three rounds
are computed, you’ll easily be able to extrapolate this algorithm to any number of threads.

In the first round (Add consecutive 20 element pairs), each thread whose ID is a multiple of 2
(21) reads the value stored in the element indexed by [thread ID] + 1 (20)—if such an element
is part of the array—and adds this value to the value stored in the element indexed with the
thread’s ID. In the second round (Add consecutive 21 element pairs), each thread whose ID is
a multiple of 4 (22) reads the value stored in the element indexed by [thread ID] + 2 (21)—if
such an element is part of the array—and adds this value to the value stored in the element
indexed with the thread’s ID. In the third round (Add consecutive 22 element pairs), each
thread whose ID is a multiple of 8 (23) reads the value stored in the element indexed by [thread
ID] + 4 (22)—if such an element is part of the array—and adds this value to the value stored
in the element indexed with the thread’s ID, und so veiter (or “and so on” for my English
readers). The pattern for each successive round simply repeats with the indexes involved
growing by a factor of two.

The code to implement a reduction summation on an array of integers is given in
Example 7-2. This code is modified from the code given in Example 6-4 with the differences
highlighted in bold text.

130 C H A P T E R 7 :   M A P R E D U C E

EXAMPLE 7-2. Reduction code to sum elements of an array

#include <pthread.h>
#include <stdio.h>
#include "pth_barrier.h"

#define NUM_THREADS 128

int N; // number of elements in array A
int *A;
int gSum[NUM_THREADS]; // global storage for partial results
pth_barrier_t B;

void *SumByReduction (void *pArg)
{
 int tNum = *((int *) pArg);
 int lSum = 0;
 int start, end, i;

 start = ((float)N/NUM_THREADS) * tNum;
 end = ((float)N/NUM_THREADS) *(tNum+1);
 if (tNum == (NUM_THREADS-1)) end = N;
 for (i = start; i < end; i++)
 lSum += A[i];
 gSum[tNum] = lSum;

 pth_barrier(&B);
 int p2 = 2;
 for (i = 1; i <= NUM_THREADS; i *= 2) {
 if ((tNum % p2) == 0)
 if (tNum+i < NUM_THREADS) gSum[tNum] += gSum[tNum+i];
 p2 *= 2;
 pth_barrier(&B);
 }
 free(pArg);
}

int main(int argc, char* argv[])
{
 int j, sum = 0;
 pthread_t tHandles[NUM_THREADS];

 InitializeArray(A,&N); // get values into A array; not shown
 pth_barrier_init(&B, NUM_THREADS);
 for (j = 0; j < NUM_THREADS; j++) {
 int *threadNum = new(int);
 *threadNum = j;
 pthread_create(&tHandles[j], NULL, SumByReduction, (void *)threadNum);
 }
// just wait for thread with id=0 to terminate; others will follow
 pthread_join(&tHandles[0], NULL);
 printf("The sum of array elements is %d\n", gSum[0]);
 return 0;
}

R e d u c e A s a C o n c u r r e n t O p e r a t i o n 131

The first thing to notice about the code in this example is the inclusion of another header file,
pth_barrier.h, and a barrier object globally declared by pth_barrier_t B. A barrier is a
synchronization that will pause threads at the barrier point in the code until all threads working
in the computation have reached that same point. Once all threads have arrived, the barrier
releases the threads to begin execution of the succeeding code. This is like a starting line at a
race that doesn’t allow the competitors to start until all racers have reached the start line; once
all the racers are ready, they are allowed to begin the event. See “A Barrier Object
Implementation” on page 134 for details about implementing such a barrier object with the
POSIX threads library.

If you look at the main() function, you will see the initialization of the array, the initialization
of the barrier object, and the creation of threads to execute the SumByReduction() function. The
main thread then waits for only the first thread created. This thread will have an ID
(threadNum) of 0, and the pthread_t value returned from pthread_create() is stored in the index
0 element of the tHandles array. Since the final result will be in the gSum[0] location, and this
“0” thread computes that final value and stores it in the location, once the 0 thread has
terminated, the final sum has been stored and is ready to be used.

The first half of the SumByReduction() function code is taken verbatim from the corresponding
function found in Example 6-4. The second half (in the bold text) is the reduction of the partial
sums generated by the threads into a single summation value. Before reduction of the partial
sums can begin, all of the partial sums must be computed. Even though we could assume that
an equal distribution of chunks of data array will be assigned to each thread, we cannot assume
(Simple Rule 6) that all threads will finish at the exact same time to store the partial sum result
in the proper gSum slot. While there could be more than enough resources to assign one thread
to a core exclusively, there are myriads of other factors within the operating system or the
processor hardware that can slow down or inhibit the computation of one or more threads.
Thus, we need to place a barrier after the assignment of each thread’s partial sum into the
gSum array. After the last thread has reached the barrier, we know that all the partial sums have
been stored and the computation can safely proceed to the reduction. The whole key to the
reduction algorithm working correctly (and being able to prove that this is a correct algorithm)
is the barrier synchronization.

The reduction computation mimics the combining of data in Figure 7-1. The for loop counts
off the rounds, with the i variable serving as the offset into the gSum array from which a thread
will read data during the current round. The loop variable is multiplied by 2 in each iteration.

The p2 variable will be powers of 2 that are used to determine which threads need to read data
from the gSum array and add that value to the value found in that thread’s assigned gSum element.
The outer if-then statement in the body of the loop makes this determination by dividing a
thread’s ID number by p2 and allowing those threads that are evenly divisible by the current

132 C H A P T E R 7 :   M A P R E D U C E

p2 to proceed to the inner if-then statement. The inner conditional expression (tNum+i <
NUM_THREADS) will ensure that the proposed element of the gSum array to be read actually exists
within the array bounds and, if so, increments the value of the thread’s gSum slot with the value
accessed.

Regardless of whether or not a thread was allowed to participate in the addition operation,
every thread multiplies the local copy of p2 by 2 and then waits at a barrier until all threads
have completed whatever computation was allowed within the current round of the reduction.
All threads will execute something within each round of the reduction, even though half as
many are doing useful work in a given round than in the previous round. This may seem like
a waste of resources. However, since all threads must meet up at the barrier, we keep each
thread running and doing a minimal amount of work (doubling the value of p2 in each round)
to keep in sync with those threads that are still doing constructive work.

N O T E
While I’ve never written one or seen an implementation of one, creating a barrier that could

work with a different number of threads each time it was used sounds like such a complex

and daunting task. I’m afraid that the execution of such a beast would have massive amounts

of overhead—certainly much more than keeping some threads alive for a few microseconds

past the time they are doing anything practical.

Once you’ve had a chance to digest the code in Example 7-2 and probably traced the concurrent
execution of the code using the example given in Figure 7-1, you may be asking yourself if
this will work with a number of threads that is not a power of 2. All the instructions seem to
be predicated on powers of 2, but there may come a time when you can only use 14 or 57
threads for a reduction operation. Rest assured, the code does work for a number of threads
that is not a power of 2.

To prove this to yourself, try tracing the algorithm with nine threads (#define NUM_THREADS 9).
The gSum array will be indexed from [0] to [8] (visualize another element attached to the right
of the gSum array shown in Figure 7-1). There will be four rounds to the reduction algorithm,
where i will be assigned values 1, 2, 4, and 8. The first eight elements of the gSum array will be
processed as shown in Figure 7-1 during the first three rounds of the algorithm. The ninth
element (index [8]) will be unchanged, since all potential elements of gSum that would be read
and used to add into the contents of that slot are not within the bounds of the array. At the
fourth round, the 0 thread will read the contents of gSum[8] (0 + i = 8) and add that value to
the contents of gSum[0]. You can reproduce this idea to any number of threads between 9 and
16 (or any other nonpower of 2) where the upper slots of gSum will be summed (via reduction)
into the index [8] element during the first three rounds, and the fourth will bring the final
total into gSum[0].

Speaking of odd numbers of threads, did you notice the use of the (float) cast in the
computation of start and end in Example 7-2? Rather than hoping for a number of iterations

R e d u c e A s a C o n c u r r e n t O p e r a t i o n 133

that will be evenly divisible by the number of threads, you can use this method to divide
iterations more evenly than integer division. For example, suppose that you have a loop with
122,429 iterations to be divided among 16 threads. If you use integer division and an
assignment statement for the last thread to use 122,429 for its end value, each thread would
be assigned 7,651 iterations, except the last one, which would get 7,664 (if you don’t have a
calculator handy, just trust me on the arithmetic). When using floating-point division that
truncates fractional parts when recast back to (int), 13 of the threads will be assigned 7,652
iterations and the other 3 get 7,651. If the time to compute one iteration is short, 13 extra
iterations assigned to the last thread might not have much impact. If an iteration takes 30
seconds to compute, waiting six and a half minutes for one thread to finish is a serious load
balance issue. Regardless of the time per iteration, for static scheduling of loop iterations, using
(float) when computing the start and end bounds will always generate a better load balance
between threads.

A Barrier Object Implementation

A barrier object can synchronize thread execution at a specific point within the code. Threads
are blocked at a barrier until all threads have reached the barrier point, and then all threads
are released. With this description, we can develop the code to implement a barrier object to
be used in Pthreads codes.

A Pthreads condition variable will hold threads until they can be released. So, we need a
condition variable and the associated mutex object. In addition, the barrier must know the
total number of threads that are participating in the barrier and how many threads have arrived
at the barrier. When the final thread has come to the barrier, use that thread to release all the
other waiting threads and to reset the counters of the barrier for the next use.

In my initial implementations of the barrier object, since I was using the count of threads that
have arrived as the condition to keep threads waiting, I had thought to have the last thread
exiting the barrier do the reset of all the counters. By keeping the count of threads at the barrier
equal to 0 until the last thread was ready to exit, I didn’t take into account the chance of another
thread reentering the barrier, acquiring the mutex, checking the conditional expression, and
passing over the pthread_cond_wait(). When a thread external to the while loop usurps the
mutex and isn’t forced to wait as it should be, it is known as an intercepted wait. In this case,
the intercepted wait of an external thread entering the barrier before all threads previously
waiting on the barrier had left can lead to a deadlock.

Thus, I need a conditional expression for the condition variable that doesn’t rely on the count
of threads at the barrier. I’ve chosen to “color” each use of a barrier in a cyclic fashion. When
threads enter a barrier, they must wait for all threads to enter the barrier while the barrier is
the same color. When the final thread shows up, the color of the (future) barrier changes and
the counter resets (for the next use). Threads that are signaled to wake up check the barrier
color. If it is not the same color that they found when they entered, they know that the final

134 C H A P T E R 7 :   M A P R E D U C E

thread has arrived and they can now exit the barrier. The structure for the pth_barrier_t type
is given here:

typedef struct {
 pthread_mutex_t m;
 pthread_cond_t c;
 int count, color, numThreads;
} pth_barrier_t:

Following the convention of other Pthreads synchronization objects, I have written an
initializing function to set up a barrier. This function simply calls the initialization functions
for the condition variable and mutex. The total number of threads that will always participate
in each use of the barrier is sent as a parameter to the initialization function. This value sets
the two integer counters within the object. The count is decremented as threads come into the
barrier and will reach 0 when the final thread has arrived. The color will actually toggle
between “0” and “not 0,” but I’ve added a definition of RED to be used in the initialization, for
some extra flair. The initialization code is given here:

#define RED 0

pth_barrier_init (pth_barrier_t *b, int numT)
{
 pthread_mutex_init(&b->m, NULL);
 pthread cond_init(&b->c, NULL);
 b->count = b->numThreads = numT;
 b->color = RED;
}

Upon entering the pth_barrier() function, a thread first gains control of the object’s mutex and
notes the current color of the barrier. The color is held in a variable (kolor) local to each thread
entering the barrier function (since kolor is declared in a function called by a thread). The
thread then determines whether it is the last to arrive. If not, it blocks itself on the condition
variable (and releases the mutex). If the thread is the last to arrive, which it will know from
the barrier’s count being decremented to 0, it will reset the color of the barrier, set the count,
and wake up all threads that have been waiting. The code for the pth_barrier() function is
given here:

void pth_barrier (pth_barrier_t *b)
{
 pthread_mutex_lock(&b->m);
 int kolor = b->color;
 if (--(b->count)) {
 while (kolor == b->color) pthread_cond_wait(&b->c, &b->m);
 }
 else { // last thread
 pthread_cond_broadcast(&b->c);
 b->count = b->numThreads;
 b->color = !b->color;
 }
 pthread_mutex_unlock(&b->m);
}

R e d u c e A s a C o n c u r r e n t O p e r a t i o n 135

Could we still have a disastrous intercepted wait? Consider two threads running and needing
to wait at the barrier. If T0 is already waiting, T1 will enter and realize it is the final thread.
While still holding the mutex, T1 changes the color of the barrier (to BLUE, say), sets the
count, and broadcasts the wake-up signal before releasing the mutex. If T1 races through the
code following the barrier and encounters the barrier again (perhaps in a loop), it will see that
it is not the last to arrive at a BLUE barrier. T1 decrements the barrier count and will call
pthread_cond_wait(). From the fairness property of the interleaving abstraction, we know that
T0 will eventually acquire the mutex. Upon return from waiting, it evaluates the while
conditional expression. Since T0 was waiting at a RED (kolor) barrier, the expression is false (the
current barrier color is BLUE) and the thread will exit the barrier. After running through the
code following the barrier, the next instance of the same barrier encountered by T0 will be BLUE.

Threads under Windows Vista have added a CONDITION_VARIABLE object that works much like
the Pthreads equivalent. A CRITICAL_SECTION object is associated and released when the thread
waits by calling SleepConditionVariableCS(). Like many other Windows Threads functions that
block threads, this function allows you to set a time limit. To wake threads sleeping on a
CONDITION_VARIABLE, use a call to WakeConditionVariable().

I can’t take too much credit for the barrier implementation here. I had tried using two
decrementing counters, the second of which counted threads leaving the barrier so that the
final thread could reset all the counts. When this method kept deadlocking, I turned to
Programming with POSIX® Threads (Addison-Wesley Professional, 1997) by David R.
Butenhof and got the color inspiration. The barrier implementation given here is a
simplification of the barrier code in Butenhof’s book. Of course, his implementation is much
more detailed and portable than the one I’ve cobbled together. I urge you to go over his codes
and consider using his full implementation if you need to use barriers in more complex
situations.

Design Factor Scorecard

How efficient, simple, portable, and scalable is the reduce code described earlier? Let’s examine
the algorithm with respect to each of these categories.

Efficiency

The code declares a local sum variable for each thread (lSum) to hold the ongoing computation
of the local partial sum. Even though each thread will update a unique element from the
gSum array, using the local sum variable avoids all the false sharing conflicts that could arise for
each and every item within an assigned chunk of data. By updating a gSum slot once per thread,
you can limit the number of false sharing conflicts to the number of threads, not the number
of items in the original data array.

136 C H A P T E R 7 :   M A P R E D U C E

The barrier implementation will be an efficiency concern for the reduction algorithm. Besides
getting a thread to wait on a condition variable in Pthreads or in Windows Threads, there is
the overhead that comes from the extra code needed to decide whether a thread entering the
barrier is the final thread and, if so, releasing all other waiting threads. The attendant
bookkeeping that goes along with all of this is just more computation to be synchronized for
correctness and more time spent not actually doing productive work.

Simplicity

With the help of Figure 7-1, the code is pretty simple and straightforward. The use of i and
p2 to determine which threads are allowed to proceed and from where data is gathered would
be the most confusing parts to someone unfamiliar with the algorithm. (While I chose to handle
them separately for the example, the i and p2 variables could be combined into the for loop.)

Portability

OpenMP has an explicit barrier for threads within an OpenMP team. There are also implicit
barriers at the end of OpenMP worksharing constructs that you can use (or turn off with the
nowait clause, if not needed). Instead of using the reduction clause in OpenMP, you could write
the explicit algorithm in OpenMP by attaching thread ID numbers to each thread in the team
and using the explicit barrier. Normally, knowing someone was even contemplating such a
use of OpenMP would elicit howls of derisive laughter, Bruce. But, if I can replace all the code
from “A Barrier Object Implementation” on page 134 with the single line #pragma omp
barrier, I would be willing to swallow my prejudices and take the simpler path.

In a message-passing system, you can write an algorithmic construction for reduction, similar
to the one discussed previously. In this case, each process has a chunk of the data, the reduction
computation on that portion of the data is computed locally, and the process ID numbers are
used to coordinate messages between processes to pass the local partial results to other
processes. There is no need for explicit barrier synchronizations, since the act of passing
messages can guarantee the correct order of data is sent and sent only when it is ready.
Receiving processes need to block until the data is received. These processes can easily compute
from where the data will be sent. Within the MPI message-passing library, there is a reduction
function that will, more often than not, give better performance than a handcoded reduction
algorithm.

Scalability

Is this algorithm, with the barrier and all, the best way to do a reduction when there are a large
number of threads involved? The implementation of the barrier object will be the principal
limit to scalability of this reduction algorithm. The synchronization objects used within the
implementation of a user-coded barrier object can be a bottleneck as the number of threads
increases.

R e d u c e A s a C o n c u r r e n t O p e r a t i o n 137

In cases where a large number of threads are used and are available for the reduction
computation, an alternative implementation would be to divide the elements of the global
array holding the partial results generated by each thread among four or eight threads. These
threads would divide up the partial sum elements, compute a reduction on the assigned chunk,
and then allow one thread to do the final reduction on these results in serial. The code for this
suggested algorithm isn’t as simple as the one using barriers, but it could be more efficient.

Applying MapReduce
I want to give you an idea about how to determine when MapReduce might be a potential
solution to a concurrent programming problem. The task we’re going to carry out here is
finding all pairs of natural numbers that are mutually friendly within the range of positive
integers provided to the program at the start of execution (this computation was part of the
problem posed during the Intel Threading Challenge contest in July 2008). Two numbers are
mutually friendly if the ratio of the sum of all divisors of the number and the number itself is
equal to the corresponding ratio of the other number. This ratio is known as the abundancy
of a number. For example, 30 and 140 are friendly, since the abundancy for these two numbers
is equal (see Figure 7-2).

1+2+3+5+6+10+15+30
30

72
= 30

12
= 5

1+2+4+5+7+10+14+20+28+35+70+140
140

336
= 140

12
= 5

FIGURE 7-2. Friendly numbers

The serial algorithm for solving this problem is readily evident from the calculations shown in
Figure 7-2. For each (positive) integer in the range, find all the divisors of the number, add
them together, and then find the irreducible fractional representation of the ratio of this sum
and the original number. After computing all the ratios, compare all pairs of ratios and print
out a message of the friendly property found between any two numbers with matching ratios.

To decide whether this problem will fit into the MapReduce mold, you can ask yourself a few
questions about the algorithm. Does the algorithm break down into two separate phases? Will
the first phase have a data decomposition computation? Are those first phase computations
independent of each other? Is there some “mapping” of data to keys involved? Can you
“reduce” the results of the first phase to compute the final answer(s)?

This is a two-part computation. We can think of the first phase as a data decomposition of the
range of numbers to be investigated, and there is a natural mapping of each number to its
abundancy ratio. Factoring a number to compute the divisors of that number is independent

138 C H A P T E R 7 :   M A P R E D U C E

of the factorization of any other number within the range. Thus, this first phase looks like a
good candidate for a map operation.

As for the reduce phase, each number-abundancy pair generated in the map phase is compared
with all other pairs to find those with matching abundancy values. If a match is found within
the input range of numbers, that match will be noted with an output message. There may be
no matches, there may be only one match, or there may be multiple matches found. While
this computation doesn’t conform to the typical reduction operations where a large number
of values are summarized by a single result, we can still classify this as a reduction operation.
It takes a large collection of data and “reduces” the set by pulling out those elements that
conform to a given property (e.g., the earlier document search application that finds the smaller
set of pages containing keywords or phrases).

Thus, the serial algorithm for identifying mutually friendly pairs of integers within a given
range can be converted to a concurrent solution through a MapReduce transformation. The
code for an OpenMP implementation of this concurrent solution is given in Example 7-3.

EXAMPLE 7-3. MapReduce solution to finding friendly numbers

int gcd(int u, int v)
{
 if (v == 0) return u;
 return gcd(v, u % v);
}

void FriendlyNumbers (int start, int end)
{
 int last = end-start+1;
 int *the_num = new int[last];
 int *num = new int[last];
 int *den = new int[last];

#pragma omp parallel
 {int i, j, factor, ii, sum, done, n;
// -- MAP --
#pragma omp for schedule (dynamic, 16)
 for (i = start; i <= end; i++) {
 ii = i - start;
 sum = 1 + i;
 the_num[ii] = i;
 done = i;
 factor = 2;
 while (factor < done) {
 if ((i % factor) == 0) {
 sum += (factor + (i/factor));
 if ((done = i/factor) == factor) sum -= factor;
 }
 factor++;
 }
 num[ii] = sum; den[ii] = i;
 n = gcd(num[ii], den[ii]);
 num[ii] /= n;

A p p l y i n g M a p R e d u c e 139

 den[ii] /= n;
 } // end for

// -- REDUCE --
#pragma omp for schedule (static, 8)
 for (i = 0; i < last; i++) {
 for (j = i+1; j < last; j++) {
 if ((num[i] == num[j]) && (den[i] == den[j]))
 printf ("%d and %d are FRIENDLY \n", the_num[i], the_num[j]);
 }
 }
 } // end parallel region
}

Ignore the OpenMP pragmas for the moment while I describe the underlying serial code. The
FriendlyNumbers() function takes two integers that define the range to be searched: start and
end. We can assume that error checking before calling this function ensures that start is less
than end and that both are positive numbers. The code first computes the length of the range
(last) and allocates memory to hold the numbers within the range (the_num). It also allocates
memory space for the numerator (num) and denominator (den) of the abundancy ratio for each
number. (We don’t want to use the floating point value of the abundancy since we can’t
guarantee that two ratios, such as 72.0/30.0 and 336.0/140.0, will yield the exact same float
value.)

The first for loop iterates over the numbers in the range of interest. In each iteration, the code
computes the offset into the allocated arrays (ii), saves the number to be factored, and finds
the divisors of that number and adds them together (sum). The internal while loop finds the
divisors of the number by a brute force method. Whenever it finds a factor, it adds that factor
(factor) and the associated multiplicand (i/factor) to the running sum. The conditional test
makes sure that the integral square root factor is not added in twice. The done variable is the
largest value that potential divisors (factor) can be. This value is set to i/factor whenever a
factor is found, since there can be no other divisors greater than the one associated with the
factor value in factor.

After summing all the divisors of a number, the code stores sum in the appropriate numerator
slot (num), and stores the number itself in the corresponding denominator slot (den). The
gcd() function computes the greatest common divisor (GCD) for these two numbers (via the
recursive Euclidean algorithm) and divides each by the GCD (stored in n) to put the ratio of
the two into lowest terms. As noted in the comments, the factoring and ratio computations
will be the map phase.

The nested for loops that follow compare the numerators and denominators between unique
pairs of numbers within the original range. To ensure only unique pairs of ratios are compared,
the inner j loop accesses the numerator and denominator arrays from the i+1 position to the
last.

140 C H A P T E R 7 :   M A P R E D U C E

If the [i] indexed numerator and denominator values match the [j] indexed numerator and
denominator values, a friendly pair is identified and the two numbers stored in the_num[i] and
the_num[j] are printed with a message about their relationship. This is the reduce phase.

The code in Example 7-3 uses OpenMP pragmas to implement concurrency. The code includes
a parallel region around both the map and reduce portions. Within this region are the
declarations of the local variables i, j, factor, ii, sum, done, and n.

The for loop of the map phase is located within an OpenMP loop worksharing construct to
divide iterations of the loop among the threads. Notice that I’ve added a schedule clause to the
pragma. I’ve specified a dynamic schedule, since the amount of computation needed to find
divisors of numbers will vary widely, depending on the number itself. Within the inner while
loop, the number of factors that must be considered will be smaller for a composite number
than a prime of similar magnitude (e.g., 30 and 31). Also, larger numbers will take more time
than smaller numbers, since there will be more factors to test and, likely, there will be more
divisors of the larger number (e.g., 30 and 140). Hence, to balance the load assigned to threads,
I’ve elected to use a dynamic schedule with a chunk size. Threads that are assigned subrange
chunks that can be computed quickly will be able to request a new chunk to work on, while
threads needing more time to continue with the assigned subrange chunk will continue
factoring.

For the reduce phase implementation, another loop worksharing construct is placed on the
outer for loop (Simple Rule 2). As with the worksharing construct in the mapping code, a
schedule clause has been added to yield a more load balanced execution. In this case, I’ve used
a static schedule. You should realize that the number of inner loop iterations is different for
every iteration of the outer loop. However, unlike the inner loop (while) within the map phase,
the amount of work per outer loop iteration is monotonically decreasing and predictable. The
typical default for an OpenMP worksharing construct without the schedule clause is to divide
the iterations into a number of similar-sized chunks equal to the number of threads within the
OpenMP team. In this case, such a schedule would assign much more work to the first chunk
than to subsequent chunks.

I visualize such a default static division of iterations like the triangle shown in Figure 7-3, where
the vertical axis is the outer loop iterations, the horizontal axis is the inner loop, and the width
of the triangle represents the number of inner loop iterations executed. The area of the triangle
associated with a thread is in direct proportion to the amount of work that the thread is
assigned. The four different shades of gray represent a different thread to which the chunk of
work has been assigned.

A p p l y i n g M a p R e d u c e 141

(a) Divided into 4 static chunks;
assigned to 4 threads

(b) Divided into 16 static chunks;
assigned to 4 threads

FIGURE 7-3. Two static distributions of monotonically decreasing amounts of work among four threads

The more equitable division of area (i.e., work) among threads is shown in Figure 7-3 (b),
which includes smaller and more numerous chunks. Those chunks are assigned to each thread
in a round-robin fashion. The sum of the areas is then much more equal between threads and,
thus, the load will be better balanced. You can accomplish the division of work shown in
Figure 7-3 (b) by using the schedule (static, 8) clause given in Example 7-3. While a dynamic
schedule may give a tighter overall load balance, the overhead associated with distributing
chunks of iterations to threads might be more adverse than simply using the “good enough”
static schedule.

There is no magic reason for using the chunk sizes that we used here. When using an OpenMP
schedule clause (or implementing such behavior using an explicit threading library), test
several different values to see whether there are significant performance differences. Choose
the one that gives the better performance in the majority of potential input data set cases. Keep
in mind the size of a cache line and choose a chunk size that will allow full cache lines to be
used by a single thread whenever possible, especially when updates are required.

Friendly Numbers Example Summary

In this section, I’ve shown how you can apply the MapReduce framework to a serial code in
order to find a concurrent equivalent. While the reduce phase of the friendly numbers problem
might seem atypical, you need to be prepared to see past the standard many-to-one reduction
case in order to be better equipped to translate serial codes to a MapReduce solution.

142 C H A P T E R 7 :   M A P R E D U C E

MapReduce As Generic Concurrency
I think the biggest reason that the MapReduce framework has gotten such a large amount of
notoriety is that it can be handled in such a way that the programmer need not know much
about concurrent programming. You can write a MapReduce “engine” to execute concurrently
when it is given the specifications on how the mapping operation is applied to individual
elements, how the reduction operation is applied to individual elements, and how the
reduction operation handles pairs of elements. For the programmer, these are simply serial
functions (dealing with one or two objects). The engine would take care of dividing up the
computations among concurrent threads. The TBB parallel_reduce algorithm is an example of
this, where the operator() code would contain the map phase computation over a subrange of
items and the join method would implement the reduce phase.

This is the reason that I recommend structuring your map and reduce phases in such a way
that you can apply the reduction computations to individual items and partial results of
previous reductions. For example, in finding the maximum value from a data set, the definition
of the reduction operation is to simply compare two items and return the value of the largest.
Such code would work whether it was being applied to pairs of elements from the original
collection or from partial results that had used this code to whittle down the original set into
fewer partial results. If the MapReduce engine only has to deal with the details of dividing up
the data and recombining partial results, the programmer simply supplies the comparison
function to the engine. The limitations of a generic MapReduce engine might preclude the use
of such a system if the reduction computation were more complex, such as the reduction
computation used in the friendly numbers problem.

I predict that providing generic concurrency engines and algorithms that allow programmers
to write only serial code or require a minimum of concurrency knowledge will become popular
in the coming years. This will allow programmers who do not have the training or skills in
concurrent programming to take advantage of multicore and manycore processors now and
in the future. Of course, until we get to the point where we can program by describing our
problem or algorithm in English (like in countless episodes of Star Trek), someone has to
understand concurrent programming to build such engines, which could be you.

M a p R e d u c e A s G e n e r i c C o n c u r r e n c y 143

C H A P T E R E I G H T

Sorting

THIS CHAPTER EXAMINES THE OPERATION OF CONCURRENT SORTING. At times, sorting has been
estimated to account for over 80% of all processing cycles. Presenting the results from database
queries, compiling a list of business investments with associated risk-reward measures, and
figuring the company payroll are all operations that require sorting. Even with the large
amounts of processing time spent on graphical interfaces, visualization processing, and video
games, sorting remains a vital part of computation. Every time you get a list of URLs from a
search engine, the results have been sorted, typically by some measure of relevance to your
original query.

In this chapter I will first consider compare-exchange sorts. These are sorting algorithms that
use the results from comparing two keys to determine the relative order of the elements with
those keys. Movement of data items will be based on those results and will be the exchange of
the positions of the two items under consideration. The final algorithm considered is radix sort,
which compares bits within keys to determine movement of data. Example codes presented in
this chapter will use arrays of integers, but you can apply these techniques to structures with
a key field to distinguish between elements.

Bubblesort
Bubblesort was the first sorting algorithm I ever learned. It is easy to code and simple to
understand. A serial version of the algorithm appears in Example 8-1.

EXAMPLE 8-1. Serial Bubblesort

void BubbleSort(int *A, int N)
{
 int i, j;
 int temp;
 for (i = N-1; i > 0; i--) {
 for (j = 0; j < i; j++) {
 if (A[j] > A[j+1]) {
 temp = A[j]; A[j] = A[j+1]; A[j+1] = temp;
 }
 }
 }
}

Through each iteration of the outer loop, some elements that have not reached their final
position within the array will move at least one step closer to that final sorted position, plus
the element with the largest key value that is not at its final position will “bubble up” to its
final sorted position. Thus, the inner loop will pass through a decreasing set of elements from
the array until there are only two elements left to consider. After these are verified to be in the
proper order, the sort will be complete. This “brute force” version can be accentuated with a
test for exchanges. If no exchanges are found in any iteration of the outer loop, the array is
sorted and there is no need for additional passes. Figure 8-1 shows the comparisons that are

146 C H A P T E R 8 :   S O R T I N G

made in the first two passes through an array of 10 integer keys. The results of data movement
are reflected in successive arrays shown.

[0] [1] [2] [3] [4] [5] [6] [7] [8]

041 340 485 188 526 489 387 739 488 988

041 340 188 485 489 387 526 488 739 988

[9]

485 041 340 526 188 739 489 387 988 488

FIGURE 8-1. Comparisons made in Bubblesort

If we have a large collection of things to be sorted, typically in an array, the first concurrent
design that comes to mind is a data decomposition approach. So, we can think about dividing
up the array of elements to be sorted into nonoverlapping chunks that can be assigned to
threads. Because of the overlapping nature of compare-exchange operations within the inner
loop, we can foresee both an execution order dependence and a data dependence. The serial
algorithm inherently contains the execution order of compare-exchange operations that is
needed to propagate an element through the array. An item traversing the array from the low-
index end to somewhere in the high-index end must go through all intervening array slots.
Dividing up the array into chunks for threads puts boundaries between chunks that elements
will need to cross at some point in the sorting process. Synchronizing threads to cooperate at
these border crossings can be a bigger nightmare than it was to get from East to West Berlin
through Checkpoint Charlie. All of this overhead will likely defeat any parallel performance
that results from threading the algorithm.

If we approach Bubblesort as a task decomposition where a task is one full and complete pass
through the data (i.e., a single iteration of the outer loop), we can resolve both of the
dependence problems. By executing one full pass through the array in a single thread, we don’t
have any boundaries between chunks that need synchronization for data movement. How can
iterations of the outer loop be independent if the data being accessed still overlaps? This will
require some synchronization between threads as to when they are allowed to start execution
of the iteration. Obviously, the iterations must be executed in the same order as they would
be for the serial algorithm, but the start of each iteration will be delayed. The thread assigned
to some iteration is allowed to start only after the previous thread has progressed some number
of elements into the array. Using this delayed start method of launching threads, we can
preserve the execution order of the serial algorithm and attempt to prevent data races.

The general algorithmic structure I’ve just described is known as a wavefront approach. Like
waves washing onto a beach, the threads sweep through the data one after the other. As long

B u b b l e s o r t 147

as one wave doesn’t catch up to another, you can avoid data races. Threads can execute with
varying speeds depending on the amount of time a thread is given within a processor core.
Even if all threads were given the same number of cycles or each thread had exclusive access
to a core, different amounts of computation can propel a thread further along than another
thread executing the same algorithm. This is why I said that we could “attempt to prevent”
data races at the end of the previous paragraph. Without guarantees in the algorithm, there is
still the chance of one thread catching up to another. For example, if the leading thread were
always doing an exchange of elements and the trailing thread did few or no exchanges, the
trailing thread could eventually be accessing the same array elements as the leading thread.

What’s the worst that could happen in this case? We can construct an interleaving of two
threads where thread T1, started after thread T0, evaluates the same pair of elements as T0.
Furthermore, T0 and T1 can both decide that they need to swap the data elements. If T0 makes
the swap before T1, the data items are left in the same unsorted order after T1 makes the swap.
If T1 found no other exchanges, two more phases would be needed to complete the sort: one
to swap those last two elements, and one to find no exchanges.

Two extra runs through the data? Is that the worst? Unfortunately, the two threads that
execute those extra phases, T2 and T3, could meet at the same adjacent elements and achieve
the same result that T0 and T1 did. We can perpetuate these bad interleavings indefinitely. This
scenario describes a livelock situation. Threads are doing some computation (sweeping through
the data array looking for out-of-order elements), but they are unable to proceed due to the
actions of some other thread (the duplicate swap of data from the same two array slots).
Contrast this to deadlock, where a thread is blocked, waiting for something to happen.

One mechanism for starting threads could simply be to have a thread send a signal to the next
scheduled thread when the leading thread has reached a point that is “safe” and we know that
the trailing thread will not overlap its predecessor in all situations. That is, thread T0 starts off
down the array comparing and swapping items. After processing a number of items, say 10,
thread T1 is given the signal to start. When T1 reaches the 10th item, it will signal T2 to begin,
and so on.

Where is that “safe” point? The most obvious point is after the leading thread has gone through
all the elements of the array. This is the serial algorithm executing with the overhead of threads
and their synchronization. If we have only a single point within the processing of the array
that is safe for a new thread to begin, we have set a limit on the scalability of the algorithm,
since we would have no more than two or three threads executing at any time.

A refinement that will better maximize the number of threads is to divide the data into a
number of nonoverlapping zones at least equal to the number of threads. Threads are not
allowed to enter a zone until the preceding thread has completed the computations within that
zone. These zones are like critical regions. We can use an appropriate synchronization
mechanism for critical regions of code to control access to the data zones. The size of the zones
can be dynamically shrunk as the number of unsorted elements decreases in each pass.

148 C H A P T E R 8 :   S O R T I N G

How much additional overhead does this modification add to the Bubblesort algorithm? We
would need to check after each compare-exchange to determine when the end of a zone had
been reached. At the end of each zone, a thread would exit the critical region (yield the lock)
and attempt to enter the succeeding zone. The more zones we install for scalability, the more
overhead there will be of exiting and entering critical regions. Example 8-2 is an
implementation of the BubbleSort() function based on these ideas using Windows Threads.
Notice that the simple code shown in Example 8-1 has bloated to at least five times the size,
and that is without counting all the support code outside of this function needed to prepare
the set of locks for the critical regions.

EXAMPLE 8-2. Threaded version of Bubblesort

unsigned __stdcall BubbleSort(LPVOID pArg)
{
 int i, j, k, releasePoint, temp, rpInc;
 BOOL exch;

 rpInc = N/NUM_LOCKS;
 rpInc++;

 while (!Done) {
 k = 0;
 exch = FALSE;
 EnterCriticalSection(&BLock[k]);
 i = iCounter--;
 releasePoint = rpInc;
 if (i <= 0) {
 Done = TRUE;
 LeaveCriticalSection(&BLock[k]);
 break;
 }

 for (j = 0; j < i; j++) {
 if (A[j] > A[j+1]) {
 temp = A[j]; A[j] = A[j+1]; A[j+1] = temp;
 exch = TRUE;
 }
 if (j == releasePoint) {
 LeaveCriticalSection(&BLock[k++]);
 EnterCriticalSection(&BLock[k]);
 releasePoint += rpInc;
 }
 }
 LeaveCriticalSection(&BLock[k]);
 if (!exch) Done = TRUE;
 }
 return 0;
}

This example uses a while loop to keep threads executing passes as long as there is still a chance
that some data remains to be sorted. For each pass through the data, the maximum number

B u b b l e s o r t 149

of unsorted elements (iCounter) is accessed (protected by the CRITICAL_SECTION object
BLock[0]) and stored locally in i. If the number of potential unsorted items is less than or equal
to zero, the sorting is done and the Done flag is set. When other threads complete their current
pass, the while conditional test will terminate them. Before this determination is made, the
index of the last slot in the first data zone is stored in releasePoint.

The j loop passes through the array element by element, compares the values of A[j] with A[j
+1], and swaps them if they are out of order. If the thread has reached the end of the current
data zone, it releases the CRITICAL_SECTION object on that zone and waits for the thread in the
next zone to release that lock before proceeding. Once the end of the array has been reached,
the thread in that zone releases the last CRITICAL_SECTION object used. If no exchanges were
made during the just completed pass, the thread sets the Done flag.

Will It Work?

Looking at the code in Example 8-2 should get your Concurrency Sense tingling. In the midst
of execution of the for loop, if j is at the last element of a data zone (j == releasePoint), won’t
the thread be accessing (and maybe updating) an item from within the next zone (A[j+1])? Is
there a chance that this data race could cause a problem? Or, can we prove that it doesn’t?
Three cases must be addressed: T0 will swap, but T1 does not; T1 will swap, but T0 does not;
and both threads must swap. These are illustrated in Figure 8-2. For concreteness, we’ll
examine the first two data zones on the array, though we could use any two adjacent zones
and any contiguous indexes. The end of the first data zone is the element at index position
[4], which is distinguished by the darker gray shade and lighter key value.

8

[3] [4]

12

[5]

7

[6]

10

(a) Case 1

8

ThreadT1

[3] [4]

7

[5]

10

[6]

12

(b) Case 2

10

[3] [4]

8

[5]

7

[6]

12

(c) Case 3

4j

ThreadT0

5j

FIGURE 8-2. BubbleSort() interleaving cases

In all three cases, thread T0 has gone through the first data zone, released the lock and acquired
the lock for the next zone, and is ready to start execution with the local j=5. Thread T1 acquires
the lock to the first zone (after the release by T0) and reaches the last comparison within that
first zone (j=4) before T0 is allowed to proceed with the first comparison in the second zone.
Thus, both threads are poised to execute the if test at the start of the for loop body. The
overlapping element is in the A[5] slot (A[j+1] for T1), and it is for this element that we need
to show there is no data race.

150 C H A P T E R 8 :   S O R T I N G

In Case 1, shown in Figure 8-2 (a), T0 will determine that the A[5] and A[6] elements must be
swapped and T1 will not need to swap A[4] and A[5]. Thus, there is no data race on A[5]. T1,
after finding no need to swap, will wait for T0 to relinquish the lock for the second zone before
it will touch A[5] again.

In Case 2, shown in Figure 8-2 (b), T0 will not need to swap A[5] and A[6], while T1 will swap
A[4] and A[5]. Again, there is no data race on A[5].

In Case 3, shown in Figure 8-2 (c), where both T0 and T1 will be swapping their respective
pairs of elements, things get a lot more interesting. Figure 8-3 gives an example of one potential
interleaving of the swap instructions after each thread has executed the if test and found that
a swap is required. Figure 8-3 also shows the resulting state of the array portion for each step
of the interleaving.

10

[3] [4]

8

[5]

7

[6]

12

10 8 78

10 12 78

10 7 78

10 7 88

temp = A[4];

A[4] = A[5];

temp = A[5];

A[5] = A[6];

A[6]= temp;

A[4] = temp;

ThreadT1

4j12temp

ThreadT0

5j8temp

FIGURE 8-3. BubbleSort() Case 3 interleaving

By Grabthar’s Hammer! Anytime you can “lose” a data item from a concurrent algorithm,
you’ve got a big problem. The interleaving shown in Figure 8-3 looks like a disastrous data
race that could scuttle use of the code in Example 8-2. What if, just before the last comparison
in a zone, we required the thread to acquire the lock on the next zone? For that last element
where the overlap occurs, a thread would need to be holding two locks. This solves our
problem, but the already complicated code would just get more convoluted. Plus, the additional
overhead wouldn’t help performance and the number of threads that can be executing within
the array at the same time would be restricted even further (lowering the scalability of the
code). It’s looking grim.

Take heart—there is a silver lining to this gray cloud. If you do some algorithmic analysis, you
will find that Case 3 is impossible. In fact, Case 2 can never occur in practice either. After a
thread has gone through a zone, the first element just beyond the boundary item will be greater

B u b b l e s o r t 151

than all the items in the previous zone. In each pass, Bubblesort pushes items with larger key
values into higher indexed slots. In the cases given in Figure 8-2, consider what would happen
if 12 were the largest key value in the first zone, Thread T0 would swap this value into A[5]
before relinquishing the lock on the first zone to T1. If 12 were not the largest key value in the
first zone, A[5] would contain that largest value (or a value larger than the largest in the first
zone). Thus, the only valid case we need to consider for interleaving analysis is Case 1, and
that case has no data race.

When trying to prove or disprove the correctness of your concurrent algorithms, don’t rely
solely on an interleaving analysis. You must also consider the properties of the serial algorithm
and how those may or may not be changed by the transformation of the serial code.

Design Factor Scorecard

Bubblesort is a difficult algorithm to parallelize and may not be worth the effort. Even so, how
efficient, simple, portable, and scalable is the concurrent Bubblesort code described earlier?
Let’s review the algorithm with respect to each of these categories.

Efficiency

The linear access of array elements provides an almost foolproof way to predict which cache
line of data will be needed next. If you can define the data sizes of zones on cache line
boundaries, you should be able to eliminate any chance of false sharing.

The linear access of array elements and the need to pass over all potentially unsorted items
doesn’t allow for the reuse of cache. Sure, this “property” is inherent in the nature of the serial
algorithm, but when multiple threads are repeatedly bringing array elements into cache,
looking at them twice, and then not needing them until the next iteration of the while loop,
you can quickly choke the memory bus with too much data. This is going to directly affect the
scalability of this algorithm.

Simplicity

It sucks. I mean, just look at the difference between the serial code (Example 8-1) and the
threaded code (Example 8-2). There’s nothing simple about the zone implementation to keep
threads out of the way of each other.

Fortunately, not all sorting algorithms are this difficult to transform. Later sections cover
concurrent versions of other compare-exchange based sorting algorithms that will prove to be
easier to understand and be much simpler to parallelize.

152 C H A P T E R 8 :   S O R T I N G

Portability

Not so good. You could do a translation of Example 8-2 into Pthreads. However, since this is
a task decomposition, I’m not too sure how easy it would be to use an implicit threading library.
And while you could use the explicit task facilities under OpenMP or Intel TBB, the problem
of coordinating threads to not overlap each other would still remain.

A distributed-memory implementation would, by necessity, need to be an algorithm based on
data decomposition. The movement of data between assigned blocks would require a message
to be sent and received. The amount of such data traffic, even in the average case, would be
prohibitive.

Scalability

This sucks, too. There will be a tradeoff between the number of threads you can use, based on
the number of zones, and the amount of synchronization overhead and time spent waiting at
locks. The more zones within the data, the more threads you can use; the more zones, the
more locks will have to be acquired and released, and the more opportunity there will be for
threads to sit idle waiting for access into the next data zone.

I suppose you could set up twice as many zones as threads to alleviate the contention on locks.
You could delay threads starting so that there is a “free” zone between each thread as it passes
through the array. There would be less chance for idle threads, but using twice as many locks
would increase the overhead by a factor of two.

None of the above even takes into account the fact that after each pass, the number of
potentially unsorted elements decreases. When the algorithm progresses to the point where
there are fewer zones than threads, you can’t help but have idle threads.

Odd-Even Transposition Sort
The odd-even transposition sort compares adjacent pairs of items in an array to be sorted and
exchanges them if they are found to be out of order relative to each other. Unlike Bubblesort,
which also compares adjacent elements, the odd-even transposition sort compares disjointed
pairs by using alternating odd and even index values during different phases of the sort. That
is, on one pass through the data, it compares an odd index [i] and the adjacent even index
[i+1] element; in the succeeding phase, it compares an even index [i] and the adjacent odd
index [i+1] element. The odd and even phases are repeated until no exchanges of data are
required. Two phases of the odd-even transposition sort are shown in Figure 8-4.

O d d - E v e n T r a n s p o s i t i o n S o r t 153

Odd phase

Even phase

485

[0]

041

[1]

340

[2]

526

[3]

188

[4]

739

[5]

489

[6]

387

[7]

988

[8]

488

485 041 340 188 526 489 739 387 988 488

041 485 188 340 489 526 387 739 488 988

[9]

FIGURE 8-4. Odd-even transposition sort

From Figure 8-4 you should be able to see that each comparison within a given phase of the
sorting algorithm can be done concurrently. Example 8-3 gives the serial code for odd-even
transposition sort. The while loop continues to make passes through the data, comparing
adjacent items, until a complete pass generates no exchange of items. We have to be sure to
run through one odd phase and one even phase to ensure that the first and last items have
had a chance to be compared. This is the purpose of using the start variable in the while
conditional expression. The comparisons in the for loop start on alternating odd and even
element indexes, and there is no overlap of elements compared within the for loop body.

EXAMPLE 8-3. Odd-even transposition sort serial code

void OddEvenSort(int *A, int N)
{
 int exch = 1, start = 0, i;
 int temp;

 while (exch || start) {
 exch = 0;
 for (i = start; i < N-1; i += 2) {
 if (A[i] > A[i+1]) {
 temp = A[i]; A[i] = A[i+1]; A[i+1] = temp;
 exch = 1;
 }
 }
 if (start == 0) start = 1;
 else start = 0;
 }
}

A Concurrent Code for Odd-Even Transposition Sort

We can use a data decomposition design on the odd-even transposition sort algorithm. Dividing
the array into chunks will keep all comparisons and data movement resulting from those

154 C H A P T E R 8 :   S O R T I N G

comparisons within the chunk. And for those comparisons that might be on the edge of a chunk
in one phase and split between chunks in the other (e.g., the [4] and [5] elements in
Figure 8-4), we can simply let the thread assigned to the chunk containing the lower indexed
element do the comparison. There will be no possibility of contention from the thread assigned
the adjacent chunk, since any item used within a comparison in either the odd or the even
phases will only be touched once.

The iterations of the inner for loop can be divided to form independent data chunks for threads.
OpenMP can easily parallelize this for loop, as shown in Example 8-4. We can use the implicit
barrier at the end of the parallel region to ensure that all the comparisons and data movement
within a phase have completed before the next phase is launched.

EXAMPLE 8-4. Concurrent version of odd-even transposition sort with OpenMP

void OddEvenSort(int *A, int N)
{
 int exch = 1, start = 0, i;
 int temp;

 while (exch || start) {
 exch = 0;

#pragma omp parallel for private(temp) shared(start, exch)
 for (i = start; i < N-1; i += 2) {
 if (A[i] > A[i+1]) {
 temp = A[i]; A[i] = A[i+1]; A[i+1] = temp;
 exch = 1;
 }
 }

 if (start == 0) start = 1;
 else start = 0;
 }
}

The temp variable is a work variable, and each thread requires a separate copy, thus I’ve added
a private clause to the pragma. I’ve added the shared clause more for documentation than
necessity. The code updates the exch variable within the loop and then reads the value outside
of the parallel region. Since it is only read within the parallel region and updated outside of
the region, start does not need any protection.

If you further consider the update of exch, you may wonder whether any protection is required,
since each thread is updating exch with the same value. In fact, whenever the same thread
detects multiple swaps within the data chunk assigned by the OpenMP loop worksharing
construct, it will reassign the same value. This is known as a benign data race. Because multiple
threads may be updating the value concurrently, it is considered a data race, but it does no
harm to leave off the protection of this variable, since it is the same value being assigned each
time. Besides, the atomic pragma doesn’t work on a simple assignment of a value. On the other
hand, if the algorithm needed to keep count of the number of exchanges—rather than just

O d d - E v e n T r a n s p o s i t i o n S o r t 155

using exch as a signal—the data race would no longer be benign, and we would be required to
protect the increment operation.

Trying to Push the Concurrency Higher

The implementation in Example 8-4 does an adequate job of parallelizing the odd-even
transposition sort algorithm. However, since the parallel region is within the body of the
while loop, each iteration will cost the execution some overhead from starting and stopping
threads. Can we move the parallelism to a “higher” level within the code (Simple Rule 2) and
at least prevent the repeated waking and sleeping of OpenMP threads? Even though the
while loop iterations can’t be executed concurrently, we can place a while loop within a parallel
region as long as we’re careful to be sure each thread executing the loop will execute the same
number of iterations. Otherwise, we can end up in deadlock with some threads at the end of
the parallel region and others at some implicit barrier in the body of the while loop.
Example 8-5 moves the parallel region to encompass the while loop and include the
interchange of values in the start variable.

EXAMPLE 8-5. Second concurrent version of odd-even transposition sort with OpenMP

void OddEvenSort(int *A, int N)
{
 int exch = 1, start = 0, i;
#pragma omp parallel
 {
 int temp;
 while (exch || start) {
 exch = 0;
#pragma omp for
 for (i = start; i < N; i += 2){
 if (A[i] > A[i+1]) {
 temp = A[i]; A[i] = A[i+1]; A[i+1] = temp;
 exch = 1;
 }
 }
#pragma omp single
 if (start == 0) start = 1;
 else start = 0;
 }
 }
}

As before, temp is required within each thread and we make it private by moving the declaration
into the parallel region. The for loop reads the start variable within the loop worksharing
construct, and the succeeding single construct updates start once the loop has completed.
Placing the update of start into a critical region would be a mistake. With a critical region, each
thread in the team will be given access, in turn, to update start. The value of start will ping-
pong back and forth between 0 and 1. For example, if start holds the value 0, the first thread
into the critical region would change start to 1. The next thread into the critical region would

156 C H A P T E R 8 :   S O R T I N G

find start holding a 1 and would change it to 0. If there were an odd number of threads, the
final value assigned in the critical region would be correct. I’m not aware of any powers or
multiples of 2, which seems to be the basis for the number of cores available on multicore
processors, that are odd.

Instead of allowing one thread at a time to have access to update start, we need one thread
alone to update this variable. For this, we use a single construct. There is the added bonus of
an implicit barrier at the end of the single construct to ensure that no threads will go onto the
next set of for loop iterations with the old value of start.

There is no easy way to protect the reading of the exch value as the conditional expression of
the while loop. Does the reading of exch need to be protected? Isn’t this also a benign data race
because each thread will be reading the same value from the variable in order to test whether
or not to proceed into the while loop? Unfortunately, this whole solution isn’t as benign as we
might have hoped.

The implicit barrier of the single construct assures us that there will be no data races on the
comparing and swapping of data between odd and even passes. However, we can still run into
a catastrophic data race at the point where threads enter the while loop, even the initial entry.
Consider the initial entry into the parallel region. The shared value of exch is 1, and all threads
should enter the while loop. What is the first thing that a thread does when it enters the
while loop? That thread resets the value of exch to 0. If any threads within the OpenMP team
don’t access the value of exch in the conditional expression before some thread has changed it,
those threads will be convinced that the sorting has completed and will proceed to the end of
the parallel region to wait for the other threads to realize that the sorting has finished. In the
worst case, all but one thread (the thread that was lucky enough to perform the original reset
of exch) will be sidelined. We’ll have a deadlock situation because any thread that gets into the
sorting code will be waiting at the barrier of the loop worksharing construct while all others
are waiting at the implicit barrier of the parallel region.

Can we fix this? The binary nature of exch is tripping us up. Simply protecting the reset of
exch with some form of synchronization won’t get around this. We need to set up exch to allow
N threads to pass into the while loop if any of the threads have performed an exchange in the
previous phase. What if, rather than setting exch to 1 when an exchange is executed, we
assigned the number of threads in the team to exch? With that change, the reset of exch within
the while loop would be a (protected) decrement, and exch would not be 0 until every thread
had entered the while loop. The changes needed to implement this method within the while
loop conditional expression and body are shown in Example 8-6.

EXAMPLE 8-6. While-loop changes to odd-even transposition sort code

#pargma omp parallel
 {int temp;
 while (1) {
 if (exch == 0 && start == 0) break;

O d d - E v e n T r a n s p o s i t i o n S o r t 157

#pragma omp critical
 exch--;
#pragma omp for
 for (i = start; i < N; i += 2) {
 if (A[i] > A[i+1]) {
 temp = A[i]; A[i] = A[i+1]; A[i+1] = temp;
#pragma omp critical
 exch = omp_num_threads(); // Assign with the number of threads
 }
 }
#pragma omp single
 if (start == 0) start = 1;
 else start = 0;
 }
 }

The first thing to note is that we’ve turned this into an infinite loop that will break when there
have been no exchanges in the previous phase (and the minimum number of phases have been
processed). This change is necessitated by the fact that we cannot protect the read access in the
while loop conditional. Pulling that reference out of the expression and restructuring the loop
as shown is necessary to make sure that all required accesses to exch are protected.

The initial access of exch within the if condition is not in a critical region. If we had placed that
line of code within the critical region protecting the decrement of exch, we would have two
exits from a block of code (within a critical region): the normal exit point for the case that
exch is not 0, and the execution of the break. Even if such bad coding practice were allowed,
consider the consequences of the case where the initial if statement has been put in an
OpenMP critical region. Whenever there were no exchanges of items from the previous phase,
the first thread into the region would acquire the synchronization object that OpenMP uses
for a critical, execute the break, fall to the implicit barrier at the end of the parallel region,
and remain holding the critical sync object. This would deadlock the rest of the threads, since
the next thread and all other threads would sit waiting at the entry to the critical region. Not
good.

What about the unsafe state of not protecting the access of exch in the initial if test access?
Could the protected decrement of the exch variable interfere with this to cause problems? If
the value of exch is 0, there is no problem, since all threads will execute the break and exit the
parallel region. If the value of exch is the number of threads executing the sort (either set in
the declaration outside the parallel region or set from an exchange of items in the previous
phase) as each thread enters that first critical region to decrement exch, we know that only the
last thread to perform the decrement will bring the value down to 0. Thus, no thread will fail
to enter the loop worksharing region from an interaction of threads checking for the end of
sorting and executing the decrement of exch.

What about the other update of exch within the loop worksharing region? The same OpenMP
critical region protects it, so no two threads can be decrementing exch and resetting it to the
number of threads at the same time. Still, there is a subtle bug that exists within the code of

158 C H A P T E R 8 :   S O R T I N G

Example 8-6. Can you see it? Consider what will happen if some threads enter the loop
worksharing portion of the while loop when others are still waiting to get through the critical
region for decrementing exch. When a swap of items is detected, the value of exch is set to the
number of threads; those threads that haven’t passed through the critical region will then
decrement this value to a number that is not 0 and is less than the number of threads. Any
swap after all threads have passed the initial critical region will set the value of exch correctly
and there will be no problem for the next phase. But, can you guarantee that there will be
another swap?

Doing interleaving analysis on your concurrent algorithms, you may also have to specify the
data set that can trigger bad behavior among threads. To show off this subtle bug in the
implementation, imagine the worst-case data set for odd-even transposition sort: a sorted list,
but with the final element at the head of the list. During any phase, there will be a single swap
until the final element reaches its sorted position. With only a single swap in a single thread,
if there are threads that haven’t passed through the decrement critical region, there is no
chance to correct the problem of having the wrong value in exch for the next time through the
while loop.

Let me illustrate why, with a concrete interleaving, having the wrong value in exch will lead
to catastrophe. Assume we have eight threads running the code shown in Example 8-6. After
three of these threads pass through the critical region and decrement exch, one of the three
identifies two elements that must be swapped and enters the critical region within the loop
worksharing region. Even if there is a queue to order access to the critical synchronization
object, this interleaving example will have the other five threads still preparing to check
whether exch is equal to 0. The thread that found the one exchange to be done during this
phase of the sort will set exch to 8. After the final five threads pass through the decrementing
critical region, the value of exch will be 3. Once the threads meet at the implicit barrier at the
end of the single region, they will all start back into the body of the while loop. However, after
the first three threads have executed the decrement, any of the other five threads that haven’t
already been able to perform the first check of (exch == 0) will break out of the while loop and
wait at the end of the parallel region. We will have some threads at the barrier at the end of
the parallel region and the rest at the barrier at the end of the loop worksharing construct.
None of these threads can be released until all threads have met at the same barrier. Since that
will never happen, the code is in deadlock.

N O T E
Even using the interlocked intrinsics of Windows Threads will not eliminate this problem.

We can use the intrinsics for every access of exch, but the interaction between threads can

still set exch to the number of threads before all threads have started the sorting phase.

Can we fix this? An explicit barrier after the critical region to decrement exch should do the
trick. However, our original goal was to remove the overhead of continually starting and

O d d - E v e n T r a n s p o s i t i o n S o r t 159

stopping the team of threads for each phase of the sort. The code in Example 8-6 now has two
critical regions, an additional implicit barrier (from the single construct), and, if we want to
fix this latest problem, an explicit barrier. I think we can be happy that the code in
Example 8-4 works. There is minimal synchronization overhead required, and the overhead
of repeatedly entering and exiting a parallel region looks to be mitigated by not needing all of
the additional synchronization that would be necessary to drive the concurrency higher in the
code.

Keeping threads awake longer without caffeine

If we can’t efficiently minimize thread sleeping and waking overhead without adding a bunch
of other overheads, we can cut down on the number of times we need to start and stop threads
within the odd-even transposition sort implementation. Inside each parallel region, rather than
doing either an odd phase or an even phase, we can do one of each. Code for this variation of
the sort algorithm is given in Example 8-7.

EXAMPLE 8-7. Concurrent double-phase implementation

void OddEvenSort(int *A, int N)
{
 int exch0, exch1 = 1, trips = 0, i;

 while (exch1) {
 exch0 = 0;
 exch1 = 0;

#pragma omp parallel
 {int temp;

#pragma omp for
 for (i = 0; i < N-1; i += 2) {
 if (A[i] > A[i+1]) {
 temp = A[i]; A[i] = A[i+1]; A[i+1] = temp;
 exch0 = 1;
 }
 }
 if (exch0 || !trips) {
#pragma omp for
 for (i = 1; i < N-1; i += 2) {
 if (A[i] > A[i+1]) {
 temp = A[i]; A[i] = A[i+1]; A[i+1] = temp;
 exch1 = 1;
 }
 }
 } // if exch0
 } // end parallel
 trips = 1;
 }
}

160 C H A P T E R 8 :   S O R T I N G

The double-phase algorithm uses two exchange flags: exch0 and exch1. Execution of the while
loop body is predicated on the exch1 variable. The two flags are reset and the thread enters the
parallel region. The first loop worksharing construct divides up the data array, and if any thread
performs an exchange, it sets exch0. After being released from the implicit barrier of the first
worksharing construct, each thread tests exch0. If the variable has been set (or the trips counter
has not been set after the first pair of phases), the thread enters the second loop worksharing
construct. If any thread performs an exchange in the second loop, exch1 is set. After threads
are released from the end of the parallel region barrier, the conditional expression of the
while loop is evaluated. If there was an exchange (exch1), the threads reset the flags and enter
the parallel region.

The double-phase variation cuts the number of entries and exits from the parallel region in
half. The start index on each of the for loops is hardcoded into the algorithm, which eliminates
the need for the single region to flip the start variable. The reduction of thread synchronization
from unrolling iterations of the original while loop should prove to be well worth the extra
coding.

Design Factor Scorecard

How efficient, simple, portable, and scalable are the first concurrent version and the double-
phase version of the odd-even transposition sort code? Let’s review these algorithms with
respect to each of these categories.

Efficiency

Cache use for the odd-even transposition sort (Example 8-4) is very good. Items from the array
are accessed in linear order. Once a thread has a starting point within the array, it will be easy
to predict the next cache line needed to be brought in from memory. Thus, we should assign
large blocks of the array to each thread. With OpenMP, the schedule (static) clause ensures
that the data is divided into a number of chunks equal to the number of threads (if this is not
already the default for loop worksharing). Explicit threading models can divide the inner for
loop to assign data in the same way.

If the data sets are large enough that you must perform cache evictions before a pass through
the data is complete, you can tweak the double-phase implementation (Example 8-7) to
alternate the choice of incrementing or decrementing the loop iterator. That is, for the first
for loop phase, increment the iterations controlling the index of array items, and during the
second for loop phase, decrement the iterations from the upper end of the array. After the first
phase, the cache will contain the highest indexed elements from the array chunk, and the
second phase would start the compare-exchange operations and access items in reverse order
from the first phase. The succeeding first phase will then have the lowest indexed array
elements stored in cache on which to work.

O d d - E v e n T r a n s p o s i t i o n S o r t 161

Simplicity

From the previous discussions, you should be able to see that the simplest implementation of
a concurrent odd-even transposition sort is given in Example 8-4. The original serial code is
well preserved and recognizable. In fact, even the addition of a second for loop and loop
worksharing construct (Example 8-7) yields code that is easy to understand. The code from
Example 8-6, with an added explicit barrier, would not be so simple.

Portability

Using an explicit threading model, a concurrent odd-even transposition sort will require
dividing the for loop iterations among threads. This is easy, but we must preserve the barrier
at the end of the for loop to ensure that all of the compare-exchange operations have completed
in one phase before threads move on to the next phase. If not, there is a potential data race on
the last indexes compared by one thread during phase k and the first indexes touched by the
thread assigned to the adjacent array chunk in phase k+1. For example, the last comparison
done by thread T0 in phase k could be elements with indexes [53] and [54]. If thread T1 has
started onto phase k+1 at the same time, it will compare elements with indexes [54] and [55].
That shared, even indexed element ([54]) is the potential data race. Thus, some form of barrier
synchronization between phases is needed.

A distributed-memory version of odd-even transposition sort takes the linear order of the ranks
of processes and executes a compare-split operation between alternating neighbor processes.
After sorting the local data in each process, the sorting takes place in alternating phases. In the
odd phase, odd-ranked processes exchange a copy of their data with a copy of the data held
by the even-ranked processes whose rank is one less. Even-ranked processes exchange data
with the odd-ranked processes whose rank is one greater. All processes perform a mergesort of
the data sets, with the odd-ranked processes keeping the upper half of the data and the even-
ranked processes keeping the lower half. In the even phase, even-ranked processes exchange
with odd-ranked processes whose rank is one greater and keep the upper half of the merged
data; odd-ranked processes exchange with even-ranked processes and keep the lower half of
the merged data. After a number of phases equal to the number of processes—half odd phases
and half even phases—the data is sorted along the linear order of processes.

Scalability

The odd-even transposition sort is very scalable. The amount of data to be compared and
exchanged per thread remains constant throughout the execution of the algorithm.

Shellsort
Before we look at Shellsort, let’s review insertion sort, since the two are related. I won’t give
a concurrent algorithm or implementation of insertion sort, though I will describe an

162 C H A P T E R 8 :   S O R T I N G

algorithmic idea that you could use. You should imagine me waving my hands and operating
sock puppets as you read that part.

Quick Review of Insertion Sort

Insertion sort is such a simple algorithm to remember and code that I’ve always used it as my
“go to” sort whenever I needed a quick and dirty algorithm. For me, the definitive example of
the algorithm is to imagine being dealt and holding a hand of bridge. Every bridge player I
know keeps cards of the same suit together and ranks the cards by face value within each suit.
In the player’s mind, at least, there is a total order to the 52 cards of a deck of standard playing
cards. For each new card that is dealt, a player picks up the new card and scans the current
cards in her hand from one side to the other until she finds the place that the new card fits
into the sequence.

Implementation of insertion sort starts with an unsorted list of items. This is typically an array,
but you can also use it with a linked list of items. At any time during the sort, the list of items
is separated into two parts: the sorted portion and the remaining unsorted items. To insert a
new item, the next unsorted item is chosen, and the sorted list is scanned from the biggest
index down to the smallest. Items larger than the item to be inserted are moved down one
place in the array. When the first item from the sorted portion smaller than the item to be
inserted is located, the position of the inserted item (within the current set of sorted items) has
been found and the item is stored in the array. Example 8-8 has the code for sorting an array
of integers with the insertion sort algorithm.

EXAMPLE 8-8. Insertion sort algorithm

void InsertionSort(int *A, int N)
{
 int i, j, v;
 for (i = 1; i < N; i++) {
 v = A[i];
 j = i;
 while (A[j-1] > v) {
 A[j] = A[j-1];
 j--;
 if (j <= 0) break;
 }
 A[j] = v;
 }
}

Figure 8-5 shows the state of an array of 10 integer keys at the end of each of three iterations
of the outer for loop on 10 integer keys. The shaded elements of the array show the sorted
portion.

S h e l l s o r t 163

i=1

i=2

i=3

485

[0]

041

[1]

340

[2]

526

[3]

188

[4]

739

[5]

489

[6]

387

[7]

988

[8]

488

041 485 340 526 188 739 489 387 988 488

041 340 485 526 188 739 489 387 988 488

041 340 485 526 188 739 489 387 988 488

[9]

FIGURE 8-5. Insertion sort

Insertion sort is an inherently serial algorithm. Items are inserted one at a time. For a
concurrent version of insertion sort, you might imagine starting in the middle and working
out, giving two fronts that could each be handled by a different thread. One unsorted area
contains the lower indexed slots and the other contains the higher indexed slots. Looking at
the original data list in Example 8-8, imagine the sorted portion to be the [4] and [5] indexed
items. What happens when one thread attempts to insert 489 and the other thread tries to
place the 526 item? Each thread’s search for insertion points crosses the search of the other
thread. What protections of the shared array would we need to do this correctly? How complex
does the code become when dealing with a shifting end boundary to terminate the insertion
of the “largest” or “smallest” seen item? Even if all of these questions can be answered
satisfactorily, the algorithm is restricted to using two threads and is not very scalable.

Serial Shellsort

Shellsort is a version of insertion sort that does an h-sort across the whole array (see
Example 8-9). That is, the algorithm is working an insertion sort in h separate, interleaved
partitions at the same time. After each pass with a given h, the value of h is reduced and another
pass over the list is done to h-sort the list. When the value of h reaches 1, a simple insertion
sort of the whole list is performed.

EXAMPLE 8-9. Serial Shellsort algorithm

void Shellsort(int *A, int N)
{
 int i, j, h, v;
 h = 1; while (h < N) h = 3*h + 1;
 h /= 3;
 while (h != 1) {
 for (i = h; i < N; i++) {
 v = A[i]; j = i;
 while (A[j-h] > v) {
 A[j] = A[j-h];
 j -= h;
 if (j <= h) break;

164 C H A P T E R 8 :   S O R T I N G

 }
 A[j] = v;
 }
 h /= 3;
 }
 InsertionSort(A, N); // clean up
}

Figure 8-6 shows an array of 10 integer keys before and after Shellsort with h=3. With such
an h value, the array contains three sorted lists interleaved. The three lists are identified in the
figure with squares, circles, and triangles over the index values on the second array.

h=3

485

[0]

387

[1]

988

[2]

526

[3]

188

[4]

739

[5]

489

[6]

041

[7]

340

[8]

488

485 041 340 488 188 739 489 387 988 526

[9]

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

FIGURE 8-6. Shellsort with h=3

If you focus on just the items indexed with multiples of 3 from the original array (485, 526,
489, 488), the second array has sorted this list in the slots identified by squares in the second
array. The other two sublists (marked with circles and triangles) have been similarly sorted.

The advantage of Shellsort over insertion sort is that items are moved closer to their final
position with fewer exchanges of items. While insertion sort exchanges adjacent items,
Shellsort exchanges “adjacent” items that are actually h items apart. If the item destined to be
first, within an array of N items, is located at the opposite end of the array, it will take (at most)
N/h exchanges to place this element within the first h locations in the array.

Concurrent Shellsort

For a given value of h, the Shellsort algorithm interleaves h independent insertion sorts. In the
code in Example 8-9, the h-sorted partitions each contain one element (before the i loop
starts). Within the body of the for loop, the code inserts an unsorted item into each of the h
partitions before adding another unsorted item to each. This is like playing a card game by
yourself, dealing out one card and inserting that card into a hand before dealing out the next
card to the next hand and inserting into that hand.

As written, the code in Example 8-9 doesn’t expose the data decomposition opportunities of
each independent h-partition. For concurrent design and implementation purposes, it would
be better for the serial algorithm to sort an entire h-partition of data before going to the next
h-partition. This scheme would be like dealing out all of the cards to each hand, then sorting
all the cards in a hand before moving on to another hand. That way, it is easier to invite other

S h e l l s o r t 165

players into the game and have each hand sorted concurrently. Example 8-10 shows the
modified Shellsort code to add an outer loop to sort a single h-partition before going on to the
next h-partition.

EXAMPLE 8-10. Modified serial Shellsort to sort an h-partition all at once

void Shellsort(int *A, int N)
{
 int i, j, k, h, v;
 h = 1; while (h < N) h = 3*h + 1;
 h /= 3;
 while (h != 1) {
 for (k = 0; k < h; k++) {
 for (i = k; i < N; i += h) {
 v = A[i]; j = i;
 while (A[j-h] > v) {
 A[j] = A[j-h];
 j -= h;
 if (j <= h) break;
 }
 A[j] = v;
 }
 } // for k
 h /= 3;
 }
 InsertionSort(A, N); // clean up
}

This modification of the serial algorithm is an application of Simple Rule 8. With this
formulation of Shellsort, we can easily parallelize the code. On the outer k-loop, a loop parallel
solution such as OpenMP or Intel TBB will work. Example 8-11 shows the OpenMP version
of the code from Example 8-10. It declares the i, j, and v variables within the scope of the k-
loop to make them private. The firstprivate clause on the parallel pragma creates a private
copy of the variable h and will initialize it with the value of the shared copy prior to entering
the parallel region.

EXAMPLE 8-11. OpenMP version of Shellsort

void ParallelShellsort(int *A, int N)
{
 int k, h;
 h = 1; while (h < N) h = 3*h + 1;
 h /= 3;
#pragma omp parallel firstprivate(h)
 {
 while (h != 1) {
#pragma omp for
 for (k = 0; k < h; k++) {
 int i, j, v;
 for (i = k; i < N; i += h) {
 v = A[i]; j = i;
 while (A[j-h] > v) {

166 C H A P T E R 8 :   S O R T I N G

 A[j] = A[j-h];
 j -= h;
 if (j <= h) break;
 }
 A[j] = v;
 }
 } // for k
 h /= 3;
 } // end while
 } // end parallel region
 InsertionSort(A, N);
}

The code in Example 8-11 illustrates placing a while loop into a parallel region for each thread
to execute as I discussed at the end of “Odd-Even Transposition Sort” on page 153. The reason
that the parallelization of the while loop is easy in Shellsort but nearly impossible in odd-even
transposition sort is the fact that the while loop test is independent of the computations
performed in Shellsort. The firstprivate clause gives each thread in the team a copy of h that
has been initialized from the value assigned to the shared copy prior to entering the parallel
region. Within the parallel region, iterations of the k loop are divided among the threads and
the implicit barrier holds threads until all the partitions have been sorted. After release from
the barrier, each thread updates the local copy of h. Since each thread will hold the same value
of h, the number of iterations of the while loop executed will be the same for each thread, and
threads will terminate execution of the parallel region at the same time.

Design Factor Scorecard

How efficient, simple, portable, and scalable is the concurrent Shellsort code described earlier?
Let’s review the algorithm with respect to each of these categories.

Efficiency

The computational complexity of Shellsort is not well understood and relies heavily on the
sequence of decreasing values for h. It does seem to perform better than some other sorts, such
as insertion and selection sorts, which both have asymptotic complexity of O(n 2).

N O T E
In Algorithms (Addison-Wesley, 1983), Robert Sedgewick notes that the sequence ..., 1093,

364, 121, 40, 13, 4, 1 has been shown to provide good speed. This sequence is built into all

code examples used in this section.

The algorithm’s strength of fewer exchanges done over long distances to quickly place items
closer to their final position is the concurrent algorithm’s weakness when it comes to efficiency.
In the serial version of the algorithm (Example 8-9), the long-distance moves of data can take
advantage of some cache reuse. At the start of execution, two different cache lines would be

S h e l l s o r t 167

used to hold items that are h units apart in the array. Consecutive iterations of the i loop would
use the next consecutive item from a cache line already in memory. As the algorithm progresses
and the length of the sorted h-partitions grows, more cache lines are needed, but the next
insertion is done one array item down from the previously accessed item. Thus, it uses a nice
and orderly progression of cache lines that an automatic prefetch mechanism should be able
to recognize.

With the code modifications in Example 8-10, we have even better cache reuse for each
iteration of the i loop. In fact, by working through the entire h-partition all at once, subsequent
processing of h-partitions will likely find many, if not all, of the necessary cache lines already
loaded.

Assigning consecutive h-partitions to different threads will lead to false sharing problems.
These two h-partitions will share almost all of the same cache lines. The concurrent algorithm
is constantly reading (for comparison of the item to be inserted) and writing (moving items
down to make an insertion point) elements from the cache lines for each iteration of the
while loop within the i loop.

A scheduling clause on the OpenMP pragma in Example 8-11 might yield better cache reuse
behavior. If we know how many items to be sorted will fit into a cache line, we can set the
schedule for the i loop iterations to ensure that each thread will handle chunks of consecutive
h-partitions and reuse the same cache lines. For example, in the sorting of integers (4 bytes),
with a 128-byte cache line and the data aligned on cache boundaries, you can use the clause
schedule(static, 32).

Unfortunately, the schedule clause may only ensure that the first cache line touched by a
thread would be touched exclusively by only one thread. Unless the h values used were powers
of 2, the code would still be prone to some false sharing. Looking over the list of h values
endorsed by Sedgewick, you may notice that two of the six values are prime (1,093 and 13)
and none of them, except 1, is a power of 2. After the first cache line, the cache line holding
an array item that is h elements away will be found on a cache line shared by another thread.

On top of all of this, there may be a problem with cache eviction, too, if cores have shared
caches. Depending on the size of the data and the number of cores and threads sharing a cache,
as lines are loaded in, there is the chance that an early line (used as the algorithm moves items
to find the proper insertion point) will be removed to make room. As the algorithm progresses
and the value of h decreases, the number of elements within a partition and the number of
cache lines needed to hold an entire partition will increase. In the extreme case, each time a
new item is to be inserted, all of the cache lines may need to be reloaded.

Simplicity

The addition of the k loop and the changes to the body of this loop (the previous i loop and
body) were very minor and easy to understand. The addition of the two OpenMP pragmas is
also a minor change to the serial code that keeps the basic algorithm intact.

168 C H A P T E R 8 :   S O R T I N G

Portability

The OpenMP solution is portable. Using TBB for this algorithm would take a similar tack. Some
form of barrier synchronization is required to make sure threads don’t proceed to the next
iteration of the while loop before all the h-partitions have been sorted with the previous value
of h. OpenMP gives us this synchronization automatically at the end of the loop worksharing
construct.

The native threads solution simply needs to divide up the k loop iterations. The explicit barrier
that TBB would need is a requirement for native threads, too.

A distributed-memory version is tricky, since there is the movement of data from one part of
the array to another and those two parts may be assigned to different processors. In
Introduction to Parallel Computing: Design and Analysis of Parallel Algorithms (Benjamin
Cummings, 1994), Vipin Kumar et al. describe an algorithm on a hypercube network where
the gray code numbering of nodes used to form a ring also defines the order of nodes for the
sorted data. The basic algorithm is in two phases. The first phase has d steps, one for each bit
position in the binary representation of node labels in the d-dimension cube. Each step has
each node sort the data assigned and then do a compare-split operation between pairs of nodes
whose label differs at the current bit position. The compare-split operation exchanges the upper
half of the data in the node with a 0 in the bit position with the lower half of the data in the
node having a 1 in the relevant position. After the d steps of the first phase, taking each bit
position in turn, the data to be sorted is moved to a position closer to its final location. The
second phase is an odd-even transposition sort across the nodes, which should proceed with
fewer moves of data items.

Scalability

The scalability of concurrent Shellsort starts out good. At any time during the sorting, there
will be h different independent partitions that will differ in size by one item at most. However,
while load balance between partitions remains good, the number of partitions steadily
decreases as the algorithm proceeds, but the granularity of sorting each partition increases
(which sounds like good news, bad news, good news). Eventually, there will be a single
partition of data to be sorted. Regardless of the data size, the scalability of this concurrent
algorithm gets worse as the computation proceeds.

Quicksort
The serial Quicksort algorithm is implemented recursively. You choose an element from the
unsorted array as the “pivot” element, and then partition the array contents such that the pivot
item ends up at the point that divides the array into elements that are less than or equal to the
pivot item and elements that are greater than the pivot item. The Quicksort routine can then
sort each “half” of the data.

Q u i c k s o r t 169

Data sets that are sorted or nearly sorted present performance problems for the Quicksort
algorithm. In these cases, one of the partitions will dwarf the other partition in size. The best
performance will be from data sets that are equal in length after partitioning. Example 8-12
gives code for the Partition() function and the recursive QuickSort() function.

EXAMPLE 8-12. Serial Quicksort algorithm

int Partition (int p, int r)
{
 int x = A[p];
 int k = p;
 int l = r+1;
 int t;

 do k++; while ((A[k] <= x) && (k < r));
 do l--; while (A[l] > x);

 while (k < l) {
 t = A[k]; A[k] = A[l]; A[l] = t;
 do k++; while (A[k] <= x);
 do l--; while (A[l] > x);
 }
 t = A[p]; A[p] = A[l]; A[l] = t;
 return l;
}

void QuickSort(int p, int r)
{
 if (p < r) {
 int q = Partition(p, r);
 QuickSort (p, q-1);
 QuickSort (q+1, r);
 }
}

The code assumes that a global array, A, holds the data to be sorted and the QuickSort() function
needs to have only the start and end index values (p and r, respectively) of the subportion of
the array to be sorted. The q variable holds the index of the pivot element after the partitioning
around this item has completed. Two calls to the QuickSort() function complete the algorithm.
The first call to QuickSort() works on the lower partition up to, but not including, the pivot
element (from p to q-1); the second call deals with the upper partition from the element just
after the pivot to the end of the array (from q+1 to r). If the number of elements in the array
is zero (p < r), that recursive call is halted and the empty subarray has been sorted.

Figure 8-7 shows three views of an array of 10 integer keys. The first line shows the original
data, the second displays the data after the array has been partitioned, and the third shows
how each of the two partitions from the second line would be partitioned. The boxes
encapsulate the portions of the array that need to be sorted.

170 C H A P T E R 8 :   S O R T I N G

485 041 340 526 188 739 489 387 988 488

041 188 340 387 485 488 489 526 739 988

188 041 340 387 485 739 489 526 988 488

FIGURE 8-7. QuickSort partitioning

N O T E
Due to the expense of recursion, Quicksort is often implemented with a “short-circuit” sort

routine (e.g., Bubblesort, insertion sort) that sorts the current subarray when the size of the

array to be sorted is less than some threshold.

The Partition() function chooses a pivot element from the data to be sorted and then moves
elements to either side of the pivot item depending on the element’s relation to the pivot value.
In the example code, I simply chose the first element within the array to act as the pivot. You
can minimize the data movement by stepping through the elements from both ends of the
array, and when an element is found to be in the wrong partition, it is swapped with the other
“wrong” element from the other partition. When the two index pointers meet, the last swap
places the pivot element into its sorted position. The function returns the index of the pivot
element.

Concurrency Within Recursion

Since there is no overlap in elements, each of the two partitions created from a call to
Partition() can be sorted independently. But can we thread the recursion of the algorithm?

One method that immediately springs to my mind is to create a new thread in place of each
recursive QuickSort() call. Each spawned thread would sort a partition. Example 8-13 shows
the changes that you can make to QuickSort() using Windows Threads.

EXAMPLE 8-13. Create a new thread for each QuickSort() recursive call

unsigned __stdcall QuickSort(qSortIndex *m)
{
 int p = m->lo;
 int r = m->hi;
 if (p < r)
 {
 qSortIndex s, t;
 HANDLE tH[2];
 int q = Partition(p, r);
 s.lo = p; s.hi = q-1;
 tH[0] = (HANDLE)_beginthreadex (NULL, 0, QuickSort, &s, 0, NULL);
 t.lo = q+1; t.hi = r;

Q u i c k s o r t 171

 tH[1] = (HANDLE)_beginthreadex (NULL, 0, QuickSort, &t, 0, NULL);
 WaitForMultipleObjects(2, tH, INFINITE);
 }
 return 0;
}

The struct type qSortIndex contains two integers, lo and hi, to hold the low and high index
values of a partition to be sorted. Once the partitioning is complete, the two index bounds for
the lower partition are stored in one of the locally declared qSortIndex objects and a new thread
is created to sort that partition. The index values for the remaining partition are loaded into
the other qSortIndex object and a thread is created to sort that partition. Once the two sorting
threads have been launched, the spawning thread blocks, waiting for the two new threads to
complete their sorting missions.

This is a horrible way to parallelize this algorithm (I’m the first to admit that some of my initial
ideas aren’t really all that great). Yes, it works. Yes, it will provide the correct sorted order.
Nonetheless, it uses an excessive amount of resources. This algorithm will create at least one
thread for each element in the array to be sorted. The overhead this causes will not allow this
implementation to achieve any speedup. If there is a limit to the number of threads that an
application can spawn, the code may run into this limit before all the work has been divided.
Although this solution may be simple to code and keeps the form of the original algorithm,
you should not use it.

N O T E
To reduce the number of threads, rather than creating two threads, the QuickSort() function

could spawn one thread to sort one partition and simply call itself recursively on the other.

This would not only reduce the thread creation overhead (and reduce the amount of system

resources spent on short-lived threads), but having just run through the array portions, it is

likely that the data for at least part of one of the partitions would be held within the cache

of the processor. Upon the return of each recursive call, there is still the need to wait on the

created thread to finish the assigned sorting task.

Concurrency Within an Iterative Version

You can simulate recursion in an iterative fashion by mimicking the execution stack of a process
with a stack data structure and an appropriate loop that will perform the computations and
place computation states (recursive calls) into the stack. We can perform this algorithmic
transmogrification on the Quicksort algorithm to devise a version that you can parallelize
almost as easily as the recursive version, but with much less overhead.

Iterative Quicksort

Example 8-14 shows the QuickSort() function after rewriting the recursion as an iterative
equivalent.

172 C H A P T E R 8 :   S O R T I N G

EXAMPLE 8-14. Iterative version of QuickSort() function

void QuickSort(LPVOID pArg)
{
 int p, r, q;
 qSortIndex *d = NULL, *d1, *d2;

 while (notEmpty(Q)) {
 dequeue(Q, d); //pull out next index pair
 p = d->lo;
 r = d->hi;
 free(d);

 if (p < r) { // if there is one or more things to sort...
 q = Partition(p, r);

// encapsulate the indices for the lower portion of the partition and enqueue
 d1 = new qSortIndex;
 d1->lo = p;
 d1->hi = q-1;
 enqueue(Q, d1);

// encapsulate the indices for the upper portion of the partition and enqueue
 d2 = new qSortIndex;
 d2->lo = q+1;
 d2->hi = r;
 enqueue(Q, d2);
 }
 }
}

This example assumes that we have defined some queue data structure with at least the
following methods defined on it:

notEmpty(Q)

Returns TRUE if there is at least one item on the structure, Q; otherwise, it returns FALSE.

dequeue(Q, &item)

Removes one element from the structure, Q, and returns a pointer to this element through
item.

enqueue(Q, &item)

Adds the element item to the structure Q.

If items are placed into the structure in a FIFO (first in, first out) manner, the structure is a
queue ; if the items are placed into the structure in a LIFO (last in, first out) manner, the
structure is a stack. It won’t matter which configuration you use. The only difference in the
algorithm will be the order in which parts of the array are sorted relative to each other. Since
I’ve already used “Q” to reference this structure, I’ll call it a “queue” for the rest of the
discussion. The items that are stored within the queue will be qSortIndex objects.

Q u i c k s o r t 173

The iterative code enters the while loop, which continues to iterate until the queue is empty.
This requires that you store the initial array index values into a qSortIndex object and place that
object on the queue before initially calling QuickSort(). Each iteration of the while loop removes
an index pair from the queue, partitions the shared array between those index values, and
then places the indexes of the two resulting partitions back into the queue. If the index pair
taken from the queue describes a partition that is one element or less, there is no need to call
the Partition() function and no index pair will be placed back on the queue.

N O T E
Breshears’s Fundamental Law of Sorting states that one item, by itself, is in sorted order.

We can assure ourselves that since the size of the partitions decreases after each call to
Partition(), the loop will eventually find the queue to be empty during an evaluation of the
while conditional expression. At this point, the QuickSort() function will return and the
elements in the array are sorted.

Concurrent iterative version

Data or task decomposition? Since the serial algorithm carves out chunks (partitions) of data
and sorts them, a data decomposition sounds like the way to go for Quicksort. Whether or not
it proves to be the best method, there must be some kind of static chunking method in an
algorithm to make us think about trying data decomposition. There is no static decomposition
within Quicksort. The partitioning of the array into two chunks depends on the choice of pivot
item.

Looking at the iterative algorithm implemented in Example 8-14, we can see that each of the
index pairs defines an independent task (“Sort the array within the index range [lo..hi]”). No
one task relies on the sorting of any other partition that resides in the queue at the same time.
Any available thread can do that sorting. Thus, we can parallelize this version of Quicksort by
using a thread pool. A thread pool is a set of threads to which you can assign computations.
Thread pools are nothing new; OpenMP uses thread pools but calls them teams of threads.

When implementing a thread pool as part of a concurrent solution, we must define and
implement three properties for the proper use of the pool:

• Signaling the threads when all computations have been accomplished

• Distributing work to the threads

• Terminating threads at the end of the computation

Over the next few pages, I will address each of these issues within the specific example of
implementing a concurrent version of the iterative Quicksort algorithm. It may not seem the
most natural order in which to address these properties, but the order will allow us to deal
with them from easiest to hardest.

174 C H A P T E R 8 :   S O R T I N G

How do we know when the data has been sorted and
threads no longer need to look for more partitions? The serial code in Example 8-14 uses the
fact that the queue eventually becomes empty. This won’t work in the concurrent version.
Consider the case that uses only two threads for sorting. Before threads are allowed to start
accessing the shared queue, the “pump needs to be primed” with an index pair that sets the
entire array as the initial partition. Typically, some external thread, like the main thread, will
be responsible for doing this. The first sorting thread pulls out this first task (partition). While
the first thread is calling Partition(), the second thread will encounter an empty queue and
terminate. At this point, a single thread ends up sorting the entire array. Imagine any number
of threads greater than two, and there is an easy interleaving that will always end up with one
thread doing all the work.

Instead of starting with an index pair for the entire array, what if the external thread first calls
Partition() and then loads index pairs for each of the two partitions? This will likely solve the
case when we have only two threads. However, for a scalable solution, we need to consider
cases when there are 4, 8, 16, or more threads. It would not be a prudent use of resources to
delay the concurrent execution of multiple threads so that the external thread can call
Partition() often enough to set up an initial index pair for each available thread.

Plus, at the other end of the computation, you can probably imagine cases where threads have
exhausted the queue of new partitions to be sorted, but one other thread is processing a large
partition that will yield more work. If threads terminate because they assume that an empty
queue means that all the work has been done, the work from the still-working thread will have
to be executed by that remaining thread. We need some other way to determine the difference
between when the sorting is complete and when threads are seeing a temporary absence of
work to be done.

Recall that each execution of Partition() places one element into its sorted position within the
array. Also, whenever a partition has only a single element (p == r-1), that element is known
to be in its sorted position. Since each of these two events are easily detected within the
QuickSort() function, by keeping track of how many elements are placed in their final sorted
location, we can tell when the sorting process is complete. We can use an atomically
incremented, shared counter to monitor the progress of the sorting. Threads will know all array
elements have reached their final positions when they notice that the counter has reached the
target value. We will need to restructure the code to use an infinite while loop in place of the
conditional expression testing for an empty queue. You can terminate threads within the pool
by simply executing a break from the infinite while loop.

N O T E
If the threads within the pool are to be used for some other tasks, you do not have to

terminate them. The threads could just return from the QuickSort() function to await the

next set of tasks to be computed.

Letting threads know the work is done.

Q u i c k s o r t 175

For the Quicksort implementation, I’ve already addressed this
property of thread pools by using a shared queue structure. Of course, since multiple threads
will share this, we need to make certain the queue implementation is thread-safe. A user-
defined queue needs some form of synchronization to ensure that elements are inserted
(enqueue()) and removed (dequeue()) correctly when using multiple threads.

Even if the execution of enqueue() and dequeue() are thread-safe, we must be sure that a
dequeue() operation will not attempt to pull something out when the queue is empty.
Example 8-15 shows a method for blocking a thread on an empty queue.

EXAMPLE 8-15. Blocking on an empty queue

while (notEmpty(Q)) {} // busy wait until Q has some item
dequeue(Q, d);

While the code in Example 8-15 uses a spin-wait, we would hope that the wait would be brief
and that no other threads would need to be scheduled on the core held by the thread executing
the spin-wait. Even if our hopes are answered, a problem still remains.

Assume that the queue contains one item. Thread T0 begins executing the code in
Example 8-15 and finds that the queue is not empty. T0 immediately falls out of the while loop.
At this point in the interleaving, T0 is taken out of the core in favor of thread T1 (or T1 is
running in parallel on another core). If T1 starts execution of this same code, it will also find
that the queue is not empty and will remove the one item in the queue. Once T0 has been put
back into a core, it will be under the mistaken impression that there is at least one item in the
queue. We can’t know what data T0 will get out of the empty queue, but it will most certainly
lead to disastrous consequences. We need a more atomic method of ensuring that threads
finding a nonempty queue will be guaranteed to pull out a valid item. The TBB
concurrent_queue container blocks a thread if the queue is empty (if you are going to always
use the TBB container, you can skip to the text following Example 8-16).

If you are using a hand-rolled version of a thread-safe queue, you could attempt to implement
this blocking behavior, but you will still have a problem if there is a point in the code where
it is possible to interrupt a thread between testing the queue for being empty and pulling an
element from the queue.

N O T E
If your home-grown thread-safe queue has a fixed capacity, there will be a reflexive problem

when checking to see whether the queue is full before inserting a new element.

Rather than relying on our luck in timing between checking for a nonempty queue and pulling
out something from the queue, we can use a semaphore object to keep track of the number of
items remaining in the queue. There is a twofold advantage to the use of a semaphore in this
fashion. First, threads will be automatically blocked if there are no items currently on the queue

Finding work for threads.

176 C H A P T E R 8 :   S O R T I N G

(semaphore count is zero). Second, once a thread has passed through the semaphore, it will
have an irrevocable reservation on one item from the queue, even if the thread were removed
from the core before calling the dequeue() function.

To illustrate this second advantage, again assume that there is only one item on the queue and,
consequently, the count of the semaphore is one. T0 calls the wait operation on the semaphore
and finds that the count is nonzero. Before returning from the wait call, the count of the
semaphore is decremented to zero (and both the count checking and decrementing are an
atomic operation). If T0 is now blocked and removed from the core, any other thread
attempting to get something from the queue will be blocked at the wait operation on the
semaphore. Once T0 is allowed to resume, it will call dequeue() with confidence that there is
(at least) one item on the queue to be retrieved. In fact, no matter how many other items might
be added and removed from the queue during the time that T0 is blocked, when it resumes,
there will always be some item for it to take out of the queue.

Example 8-16 shows the code fragment in Example 8-15 with the spin-wait loop replaced by
a Windows Threads semaphore to protect access to the shared queue. The semaphore, hSem, is
initialized with a value of zero (the number of items in the initially empty queue). Each time
an enqueue() operation completes, the thread that has just added to the queue increments the
semaphore by calling ReleaseSemaphore(hSem, 1, NULL).

EXAMPLE 8-16. Using a semaphore to assure items are in the queue to be removed

WaitForSingleObject(hSem, INFINITE);
dequeue(Q, d);

The TBB concurrent container, concurrent_queue, is thread-safe, and you can use it in place of
the handcoded queue that we’ve been using for the Quicksort code. However, when the sorting
of the array is complete, we’ve got to be able to get the attention of all the computation threads
to finish their work and either terminate or go to sleep until the next time the pool is needed.
With both the TBB and semaphore methods, threads are not able to break out if they are
waiting on an empty queue. The next section, dealing with the third thread pool property,
details some of these problems and a solution for getting threads to quit when the work is done.

I have now covered how to determine when the sorting
process is complete (number of items placed in their sorted positions reaches the total number
of elements to be sorted) and how to distribute work safely to each thread (semaphore-
protected queue). The last thing to discuss with regard to implementing a thread pool solution
is how to terminate the threads in the pool running the QuickSort() function. Regardless of
what happens to the sorting threads, there is probably at least one external thread waiting for
the completion of the sort. We can set up the system so that when a pool thread notices the
sorting has finished, it will send a signal to any thread that may be waiting for the sorted results.

With regard to terminating the sorting threads, one extreme option is to use one of the threads
waiting on the sort completion signal to actually terminate (with extreme prejudice) the

Giving threads their pink slips.

Q u i c k s o r t 177

threads in the pool. If we do not need the pool threads after QuickSort() has completed, keeping
them around will be a drain on system resources, even if they are not taking processing cycles.
If I could, I would put the first two sentences of the next paragraph in a flashing box with a
grating, mechanical voice repeating “Warning! Danger! Pay Attention!” as you read it. Since I
can’t, please imagine red lights and sirens going off around you.

Since threads may be in the process of updating shared data or holding a synchronization
object, it is generally not a good idea to terminate threads from an external thread. If you are
not careful about which algorithmic state threads are executing when they receive the
termination signal, data corruption and deadlock are both real potential outcomes. In the case
of the concurrent implementation of Quicksort, once all processing has completed, there will
be no chance that the threads in the pool will be in the middle of updating array elements.
Also, the only synchronization object that may be adversely affected is the semaphore. In fact,
it is most likely that a majority of pool threads, if not all, will be blocked on the semaphore and
waiting for the queue to hold another partition to be sorted. Thus, termination by an external
thread will not cause any problems from a computation thread holding a synchronization
object.

If you prefer a less gory demise to your threads, we can set up a means for the threads to
terminate from natural causes (i.e., returning from the threaded function). If you intend to
reuse the pool threads later in the computation for some other task, it is possible to get the
threads to a point outside of the QuickSort() function (see the discussion of helper functions in
Chapter 9). The semaphore again comes to our rescue. Once an external thread has received
the signal that the sorting is complete, it sets a pool termination flag variable and increments
the semaphore count by the number of threads in the pool. Within the code of the pool threads,
place a test to determine the state of the pool termination flag between the two lines of code
in Example 8-16. If the flag is not set, threads continue sorting; if the flag is set, threads break
out of the infinite while loop to either terminate gracefully or return from the QuickSort()
function to await the next assignment.

N O T E
You can put the test for the pool termination flag in the while loop conditional expression.

However, this is unlikely to catch all pool threads before they go back to get more work from

the queue. You will still need to set the semaphore value in order to wake up threads that

entered the while loop body before the pool termination flag was set.

If we use the TBB concurrent_queue container, threads executing a pop() in hopes of finding
items in an empty queue can’t be forcibly interrupted. If we have threads waiting for additional
index pairs that won’t arrive, we would modify the legal set of items that are put into the
queue. In addition to the index pairs used for identifying partitions for sorting, we could add
a special flag pair to let threads know when sorting is done. The easiest pair I can think of is
(−1, −1), since no array slot will have a negative index. After being signaled, the external thread

178 C H A P T E R 8 :   S O R T I N G

loads up the queue with enough copies of the special pair for each thread to get one. Upon
returning with a pair from the queue, threads first check to determine whether it is a valid
index pair or the termination flag pair. If it is the latter, threads can exit the QuickSort()
function.

Final Threaded Version

Example 8-17 contains the code for the threaded QuickSort() function using Windows Threads.

EXAMPLE 8-17. Final threaded version of QuickSort() function

unsigned __stdcall QuickSort(LPVOID pArg)
{
 int p, r, q;
 qSortIndex *d = NULL, *d1, *d2;
 long t;
 int N = *((int *) pArg);

 while (1) {
 WaitForSingleObject(hSem, INFINITE);
 if (Done) break; //external signal to terminate threads
 dequeue(Q, d);
 p = d->lo;
 r = d->hi;
 free(d);
 if (p < r)
 {
 q = Partition(p, r);
 InterlockedIncrement(&tCount);
 d1 = new qSortIndex; d1->lo = p; d1->hi = q-1;
 enqueue(Q, d1);
 d2 = new qSortIndex; d2->lo = q+1; d2->hi = r;
 enqueue(Q, d2);
 ReleaseSemaphore(hSem, 2, NULL); // Two items added to queue;
 } // increment semaphore count by 2
 else if (p == r) {
 t = InterlockedIncrement(&tCount);
 if (t == N) SetEvent(tSignal); // Signal that sorting is done
 }
 }
 return 0;
}

Assume the variables tCount (of type long) and Done (of type BOOL) have been declared in the
scope of all pool threads and have been initialized with zero and FALSE, respectively. This code
uses the InterlockedIncrement() intrinsic to perform an atomic increment of the tCount counter.
This increment is done after each call to Partition() and when a partition with a single element
(p == r) is detected. In the latter case, there is the chance that this is the last element to be
sorted. If tCount has reached the total number of elements to be sorted, the thread that detects

Q u i c k s o r t 179

this fact sets the event tSignal. An external thread will be waiting for the sort to complete by
waiting on tSignal. See Example 8-18.

EXAMPLE 8-18. Code fragment for calling threaded QuickSort()

 e1 = new qSortIndex;
 e1->lo = 0; e1->hi = NumToSort-1;
 enqueue(Q, e1);

// Initialize semaphore with 1 item on the queue
 hSem = CreateSemaphore(NULL, 1, NumToSort, NULL);

 for (i = 0; i < NUM_THREADS; i++)
 hThreads[i] = (HANDLE) _beginthreadex(NULL, 0, QuickSort, &NumToSort, 0, NULL);

 WaitForSingleObject(tSignal, INFINITE); // Wait for signal

 Done = TRUE;
 ReleaseSemaphore(hSem, NUM_THREADS, NULL);

After the signal confirming that the sorting task has been completed, the thread executing
Example 8-18 will set Done to TRUE and increment the semaphore by the number of threads in
order to wake up the pool threads waiting on the semaphore. The pool threads will break out
of the while loop and then, in this case, terminate them by exiting the QuickSort() function.
Instead of setting the semaphore value, we could explicitly terminate the threads with repeated
calls to TerminateThread(), one per thread HANDLE (but you didn’t hear that from me).

Design Factor Scorecard

How efficient, simple, portable, and scalable is the final concurrent version of the Quicksort
code described earlier? Let’s review the algorithm with respect to each of these categories.

Efficiency

The thread pool version of Quicksort is going to be much more efficient than spawning a new
thread for each recursive call. Even in the thread pool version, you can restructure the code
to place only one partition index pair into the queue while the other partition is held for further
processing. Keeping one of the partitions will give the algorithm a better chance of having at
least some part of the array within the cache of the core executing a thread. Changing the
queue structure to a stack (LIFO) could provide some of this benefit, too, in cases where there
is a shared cache among cores.

Another source of obvious overhead is the coordination needed to access the shared queue
that was not part of the original iterative algorithm. As soon as the system has generated a
number of partitions equal to the number of threads, it might be tempting to take the queue
out of the algorithm, since each thread would then have a partition to process. This removes
the overhead of coordination (i.e., use of the semaphore and synchronization needed to ensure

180 C H A P T E R 8 :   S O R T I N G

a thread-safe queue), but can lead to a load imbalance. If the chosen pivot elements always
fall at or near the midpoints of the subarrays calling Partition(), the loads will be balanced.
Unfortunately, we can’t know which element will be the midpoint of a subarray unless we sort
it or run the Selection code on it. The overhead of using the queue to distribute work is offset
by having a better guarantee that the load balance of the sort will be equitable.

Simplicity

Once you understand the iterative algorithm, the parallelization is straightforward. The only
tricky bits of the threaded code shown earlier are the use of the semaphore to throttle access
to the shared queue and setting up the pool of threads to be terminated. Using the count of
the number of elements that have been placed in their sorted position to determine that the
sort has completed is probably not the most intuitive means of checking for completion.
However, once explained, I hope it made sense. Even after all these changes, you can still find
the original iterative algorithm in the threaded version.

Portability

Implementing this algorithm in Pthreads is quite easy, and requires the following:

• Split the single ReleaseSemaphore() call into two separate sem_post() calls, one after each
enqueue() call.

• Use a condition variable to signal the external thread upon sort completion.

• Set up the atomic increment of the counter.

A pthread_mutex_t object would be too heavy for the atomic increment. I would recommend
using the TBB atomic fetch_and_add() operation. Be aware that the return value for this method
is the previous value of the variable, so you will need to compare it to N-1, rather than N, to
know when the final count is reached.

This is not a good algorithm for use with OpenMP as a data parallelism solution. There is no
loop on which to attach a loop worksharing construct. However, if you have a compiler that
supports the OpenMP 3.0 standard, you can go back to the recursive algorithm and the idea
presented in Example 8-13. Instead of creating a new thread for each new partition to be sorted,
though, you can spawn a new task. Unfortunately, as of this writing, I’ve not had the chance
to work with the task constructs in OpenMP, so there may be other details and traps to
implementing Quicksort with OpenMP tasks that I can’t even warn you about. (A colleague
has implemented Quicksort using the nonstandard taskq extensions to OpenMP available
within Intel compilers, so I’m confident that you will find a way to utilize the officially approved
task constructs.)

A distributed Quicksort implementation for both a mesh and a d-dimensional hypercube are
described in Introduction to Parallel Computing: Design and Analysis of Parallel Algorithms
(Benjamin Cummings, 1994) by Kumar et al. The idea in the case of the hypercube is to
repeatedly split the cube network into two smaller subcubes. After choosing a pivot value, one

Q u i c k s o r t 181

of the processes broadcasts it to all other processes. Processes partition the data in their local
memory into two subarrays around the pivot value. Subarrays are then exchanged between
the processes that share a link across the hypercube split, and each subcube picks a new pivot
element to broadcast within the subcube. The process of splitting the cubes into smaller
subcubes and exchanging subarrays across the network dimension proceeds recursively until
each node is alone within its own subcube. The data is sorted locally and the order of the nodes
is used for the overall order of data from one node to another.

Scalability

This version of concurrent Quicksort is very scalable. With each creation of two partitions to
be sorted, there is a chance for another thread to be assigned work. With finite resources, the
execution will reach a point where all threads in the pool have been assigned an initial partition
and no more threads will be sitting idle. As the sorting progresses, the size of the partitions will
continue to get smaller. Decreasing amounts of computation to the fixed overhead required to
enqueue and dequeue index pairs will eventually yield adverse performance. Before the
granularity of sorting a partition becomes too fine, you should execute a “short-circuit” sort.
That is, when a partition gets too small to afford further concurrent execution, you should use
a serial sort to finish the partition (the number of elements sorted here needs to be correctly
reflected in the variable keeping count of sorted items).

There is a very real chance of load imbalances due to the pivot selection leading to very small
partitions. You could implement an algorithm to choose a pivot that is more likely to be the
median of the data. The dynamic assignment of tasks to threads through the shared queue
helps to alleviate the impact of such imbalances. Increases in the data size for a fixed number
of threads will yield more opportunities for smoothing out the load balance between threads
in the algorithm, too.

Radix Sort
Radix sort uses the binary structure of keys to sort data. If that binary representation of keys
can be interpreted as an unsigned integer, you can use a radix sort. The unique method of
comparison between parts of keys, rather than the key as a whole, gives radix sorts a linear
time asymptotic complexity, as opposed to the polynomial complexity of the other (compare-
exchange) sort algorithms we’ve looked at in this chapter.

There are two methods of processing the binary keys that define two distinct radix sorts.
Looking at bits from most significant to least significant (left to right) gives us the radix
exchange sort. Processing bits from least to most significant (right to left) is known as straight
radix sort. We’ll look at each of these methods and how to thread them.

182 C H A P T E R 8 :   S O R T I N G

Radix Exchange Sort

Consider the most significant bit of a set of keys. There are only two possibilities for the value
of this bit: 0 or 1. After sorting the entire data set, all keys that start with 0 will appear before
all keys that have a 1 in this initial bit position. Thus, we can partition the data into two sets,
those whose keys begin with 0 and those whose keys begin with 1, where the former set will
precede the latter set.

If you consider the next most significant bit in the data subset of keys with a leading 0, there
are two possibilities for the value of this bit: 0 or 1. In the final sorted order, all keys that start
with 00 will be listed before all keys that start with 01. Thus, we can partition the data from
the leading 0 subset into two sets based on the value of the second most significant bit.
Figure 8-8 illustrates the partitioning of keys I’ve just described through the first two bit
positions.

485 041 340 526 188

“0” keys “1” keys

739 489 387 988 488
0111100101 0000101001 0101010100 01000001110 0010111100 1011100011 0111101001 0110000011 1111011100 0111101000

0111100101 0000101001 0101010100 01000001110 0010111100 0111101000 0111101001 0110000011 1111011100 1011100011

Original
order

188 041 340 526 485 488 489 387 739 988Integer
keys

1 bit
used

“01” keys“00” keys “11” keys“10” keys
0010111100 0000101001 0101010100 01000001110 0111100101 0111101000 0111101001 0110000011 1011100011 1111011100

2 bits
used

FIGURE 8-8. Radix exchange sort–two phases

If you’ve read the previous section of this chapter, you should recognize the description just
given as being very similar to the Quicksort algorithm. However, rather than partitioning the
data based on the relationship of keys to a pivot element, the radix exchange sort partitions
data into two separate and independent sets based on the value of a single bit within each key.
I hope you’ve already imagined a recursive solution for the radix exchange sort, as well as an
equivalent iterative solution. Example 8-19 shows an iterative serial implementation of the
radix exchange sort with the adapted Partition() function.

EXAMPLE 8-19. Serial version of radix exchange sort

int Partition(int *A, int p, int r, int bPos)
{
 int k = p-1;
 int l = r+1;
 int t;

 do k++; while ((k < r) && (bits(A[k],bPos,1) == 0));
 do l--; while ((l > p) && (bits(A[l],bPos,1) == 1));

R a d i x S o r t 183

 while (k < l) {
 t = A[k]; A[k] = A[l]; A[l] = t;
 do k++; while (bits(A[k],bPos,1) == 0);
 do l--; while (bits(A[l],bPos,1) == 1);
 }
 return l;
}

int RadixExchangeSort(int *A, int p, int r, int b)
{
 int q = 0;
 qParams *d, *d1, *d2;
 int bPos = b;

// initial partition to prime the queue
 d1 = new qParams;
 d1->lo = p; d1->hi = r; d1->bitPosition = bPos;
 enqueue(Q, d1);

 while (notEmpty()) {
 dequeue(Q, d); //pull out next index pair, unless queue is empty
 p = d->lo;
 r = d->hi;
 bPos = d->bitPosition-1;
 free(d);

// if there is one or more things to sort and more bits to process...
 if ((p < r) && (bPos >= 0)) {
 q = Partition(A, p, r, bPos);

// encapsulate the indices for the lower portion of the partition and enqueue
 d1 = new qParams;
 d1->lo = p; d1->hi = q; d1->bitPosition = bPos;
 enqueue(Q, d1);

// encapsulate the indices for the upper portion of the partition and enqueue
 d2 = new qParams;
 d2->lo = q+1; d2->hi = r; d2->bitPosition = bPos;
 enqueue(Q, d2);
 }
 }
 return 0;
}

The arguments to the RadixExchangeSort() function are the array of items to be sorted (A), the
low (p) and high (r) index values of the portion to be sorted, and the number of bits within
the keys (b). If the keys are 4-byte integers, the initial value of b will be set at 32. The function
declares some qParams object (a user-defined struct) to hold partition information within the
queue. Each object will contain the two indexes of a partition and the bit position within the
keys that was used to create the partition. When a qParams object is pulled out of the queue,
the bit position value contained within is decremented to find the bit position of the current
partitioning. The Partition() function includes a bit position argument, bPos.

184 C H A P T E R 8 :   S O R T I N G

The bits() function, used in Partition(), extracts and returns the nbits bits from the key starting
from the position bit position. The position parameter is the most significant bit position to
consider from the key. For the radix exchange sort, we need only a single bit from the desired
position within the key; for straight radix sorting, we will use multiple consecutive bits. The
implementation details of bits() will differ depending on what bit manipulation functionality
is available within the programming language you are using and the endian orientation of your
processor.

We could thread the code from Example 8-19 in the same manner that we threaded the code
in Quicksort. Similarly, the empty queue is used as a signal for the serial function to terminate
with the input data in sorted order. For the concurrent version, we need to add a counter to
be incremented when elements are in their final sorted positions. There are two ways to tell
when elements are in their sorted positions:

• The partition contains a single item.

• The next bit position to be examined lies beyond the least significant bit (the bit position
“index” has gone below zero).

When all bit positions have been used to partition keys, the keys that remain within a partition
are equal, and those keys are in the proper sorted positions. In this case, we need to count the
number of keys in the partition and add this to the global count.

One other difference between the radix exchange sort algorithm and Quicksort is that there is
no pivot element in the radix exchange sort. Thus, in the Partition() function, there is no final
swap of the pivot item with the item at the point in the array where the two index pointers
have met. This means that the global counter in our threaded version is not incremented after
each call to Partition().

Straight Radix Sort

The straight radix sort is the version of radix sorting that most everyone is familiar with. This
algorithm was used in sorting decks of Hollerith cards on a card-sorting machine. Starting with
the column at the far right of the key (least significant digit), the card-sorting machine would
read the column and deposit the card into a bin based on the digit found. This process
partitioned cards into classes based on the digit of the keys under consideration. The cards were
gathered up, kept in the same relative order of the bins they fell into, and the next column to
the left was used to sort the same deck. The deck of cards was repeatedly passed through the
machine, with columns progressing to the left for each pass, until all the key columns of the
cards had been used for partitioning.

When first encountered, the algorithm is counterintuitive. The key piece that makes the
algorithm work is the stability of the order in which the cards are deposited in each bin and
gathered up in order to make the next pass with the next significant column.

R a d i x S o r t 185

N O T E
A sorting algorithm is stable if records with equal keys end up in the same relative positions

to each other that they started in before sorting.

Figure 8-9 gives an example of the straight radix sort algorithm. In this example, we are sorting
three-digit keys, at a rate of one digit per pass. The bar (|) is placed to the left of the digit being
sorted on. Notice that the keys with the same digit of interest (e.g., the 8 after the second pass)
are in the same relative positions as they were from the previous pass.

485

188

739

387

988

488

Original
list

041

340

526

489

34|0

38|7

18|8

48|8

73|9

48|9

After 1st

pass

04|1

48|5

52|6

98|8

5|26

4|85

3|87

9|88

4|88

4|89

After 2nd

pass

7|39

3|40

0|41

1|88

|041

|485

|488

|526

|739

|988

After 3rd

pass

|188

|340

|387

|489

FIGURE 8-9. Straight radix sort using decimal digits

The straight radix sort can use multiple bits for each pass. If we assume that the keys in
Figure 8-9 were represented as a string of characters, the example would have accessed a full
byte of the keys at each pass. The number of bits examined within each key for each pass should
be a divisor of the key length; otherwise, the final pass will need to deal with a different number
of bits than all the other passes. The number of passes required is, of course, the number of
bits in the keys divided by the number of bits used per pass. Example 8-20 shows a serial
implementation of a straight radix sort of integer keys (32 bits) examined in 4-bit chunks at a
time.

186 C H A P T E R 8 :   S O R T I N G

EXAMPLE 8-20. Serial version of straight radix sort algorithm

#define mbits 4
#define M 16

void StraightRadixSort(int *A, int N, int b)
{
 int i, j, pass, tBits;
 int count[M];
 int *tA = new int[N];
 int *tempPtr;

 for (pass = 0; pass < (b / mbits); pass++) {
 for (j = 0; j < M; j++) count[j] = 0;
 for (i = 0; i < N; i++) {
 count[bits(A[i],pass*mbits, mbits)]++;
 }
 count[0]--;
 for (j = 1; j < M; j++) count[j] += count[j-1]; // prefix sum on counts
 for (i = N-1; i >= 0; i--) {
 tBits = bits(A[i], pass*mbits, mbits);
 tA[count[tBits]] = A[i];
 count[tBits]--;
 }

// swap pointers to swap arrays to sort in next pass
 tempPtr = tA; tA = A; A = tempPtr;
 }
 free(tA);
}

The outer for loop iterates over the number of passes to be made. Each iteration of this loop
examines the mbits bits of interest within each key using the bits() function described in our
implementation of the radix exchange sort. Rather than spending the overhead to move data
into lists that would mimic the bins of a card-sorting machine, a count of the number of keys
matching each bit pattern is kept (in elements of the count array indexed by the key value).
After examining all keys, the code uses a prefix scan to sum the counts (after decrementing
the count[0] value to account for zero indexing). The algorithm uses the scan results to put
keys with the same bits of interest together into consecutive slots of a different array (tA), which
is very much like how we’ve seen prefix scan used to pack an array in Chapter 6 and in the
sidebar “Array Packing with Prefix Scan” on page 120. After copying all the records to the new
array based on each key’s bits of interest, the code performs the next pass with the next most
significant mbits of keys. Figure 8-10 shows highlights of the computation and data movement
from the first pass on 10 integer keys with mbits set to 3. Keys are displayed in both their decimal
and binary interpretations.

R a d i x S o r t 187

0111100101
A

count

mbits=3

485

[0]

1
000

2
001

0
010

2
011

3
100

1
101

1
110

0
111

count

After count[0]-- and prefix sum operation

0
000

2
001

2
010

4
011

7
100

8
101

9
110

9
111

0000101001
041

[1]

0101010100
340

[2]

0010111100
188

[4]

1011100011
739

[5]

0111101001
489

[6]

0110000011
387

[7]

1111011100
988

[8]

0111101000
488

[9]

01000001110
526

[3]

0111101000
tA 488

[0]

0000101001
041

[1]

0111101001
489

[2]

0010111100
188

[6]

1011100011
739

[3]

0111100101
485

[8]

0110000011
387

[4]

1111011100
988

[7]

01000001110
526

[9]

0101010100
340

[5]

FIGURE 8-10. Straight radix sort code execution

The number of times each data record is moved is equal to the number of passes executed
(number of iterations in the outermost loop). The number of passes depends directly on the
size of the keys and the number of bits (mbits) examined in each pass. You can tune these
parameters during development to find an efficient value for mbits.

Using prefix scan to gather keys

The results of the prefix scan on the number of occurrences of each bit pattern of interest will
hold the value of the last index of the new array that will hold those keys with the same bits
of interest. Once these final index positions are known, the algorithm traverses the list of keys
in reverse order. It finds the new position of each item by indirect addressing using the count
array value indexed by the bits of interest within the key. After moving an item, the algorithm
decrements the element from the count array for the next key with matching bits of interest.

Even with the picture in Figure 8-10 being worth a thousand words, I’d like to expend a few
more to illustrate how the prefix scan determines where records are copied into the new array.
I’ll do this by following the movement of elements with key bits of interest, 100. There are three
such keys in the original array A: 340, 188, and 988. Once the keys have been counted,
Figure 8-10 shows a 3 in the count['100'] array element. After the prefix scan operation, the
count array corresponding to the 100 key bits contains 7. This is the index within the new array,
tA, to receive the rightmost (highest index) element with a matching key portion.

Starting from A[9] and scanning from right to left, we find that the first key with 100 in the bits
of interest is the 988 key in A[8]. This record is copied into tA[count['100']] or tA[7]. The
algorithm decrements the value in count['100'] to 6, and continues with the traversal of A. The
next 100 key encountered is 188 in A[4]. The code copies the record into tA[6] and decrements
the value in count['100'] to 5. The last 100 key record, 340, is found in A[2] and copied into

188 C H A P T E R 8 :   S O R T I N G

tA[5]. Of course, the data movement portion copies each element from A to tA when it is
encountered during the traversal from high to low index.

Keeping data movement stable

There is an unremovable dependency between iterations of the outermost loop, due to the
stability requirement of the algorithm. We must use less significant bits of keys before we can
consider more significant bits. We can use a data decomposition scheme within each pass
through the keys to convert the straight radix sort algorithm in Example 8-20 to a concurrent
version. The examination and count of the bits of interest from each key are all independent
as long as updates to each of the counters are atomic or protected. We can easily perform a
prefix scan, too. Unfortunately, movement of data will be much trickier.

If the keys have been split up among threads, determining where any given record will be
copied requires knowing how many records will fill positions in the receiving array prior to
the desired record. If we have a single global array holding the prefix scan of bit value counts,
only the thread processing the final chunk of the array of records is certain where its records
are to be copied. If we use the ideas from the serial algorithm described in the previous section
(decrementing the corresponding count element after an item is copied), the thread assigned
the second-to-last array chunk would only know where to copy its records after the thread
handling the last array chunk has moved all of its records. This serial data movement will
certainly preserve the stability of the keys. But, since this is a book about concurrency, we
should want concurrent data movement. Copying one element from here to there is
independent of the movement of another item, as long as we can guarantee no two elements
will try to occupy the same slot. To achieve this, we’ll need more processing or recordkeeping.

N O T E
Alternatively, after computing the prefix scan of count, the implementation can assign chunks

of the count array to threads. For each different element of count assigned, a thread will have

a different key bit pattern and all the records with keys matching the pattern that it will be

responsible to move. A thread scans backward through the array of records and tests each

key. For those that match any of the assigned bit patterns, the thread moves the record to a

slot in the receiving array using the corresponding count scan value, which is decremented

after use. This scheme is only scalable to the number of different bit patterns used (mbits

squared) and requires all threads to read all data keys.

Kumar et al. give a distributed radix sort algorithm that requires a number of processors equal
to the number of records to be sorted in Introduction to Parallel Computing: Design and
Analysis of Parallel Algorithms (Benjamin Cummings, 1994). With each pass examining a
different mbits section of keys, an inner loop iterates over all potential values of the mbits-sized
bit sequence. During each iteration, the processor examines its one assigned key to determine
whether the relevant portion of the key is a match for the current bit sequence being

R a d i x S o r t 189

considered. If the key matches, the processor sets a local flag to 1. Then, a prefix scan is executed
over all the flag variables across the processors, and for those nodes whose local flag was set,
the local value of the prefix scan is added to an offset (initially 0 for each pass) to find the
destination (rank of a processor) that will receive the local record. A parallel sum on the flag
values updates the offset before the processors examine the next pattern in the next inner loop
iteration.

Since each processor executes the parallel sum and prefix scan operations, regardless of the
current flag value, they are synchronization points and guarantee that each potential bit
pattern is handled by all processors before the next possible pattern is considered. Before each
check of the next possible bit pattern, the nodes reset all local flags to 0 so that the prefix scan
across the processors is correct for the current pattern under consideration. Once all possible
bit patterns have been addressed and all the keys in all the processors have a unique
destination, each processor sends its local record to the destination processor. The processor
also receives a single record before moving to the next most significant bits within the key and
repeating the process of matching against possible bit patterns, setting the flag, and going
through the prefix scan and parallel sum operations.

To illustrate this distributed algorithm, imagine a line of P people sitting in consecutively
numbered seats (1..P). Each person has been given a random nine-digit identification number.
Starting at the least significant digit, we ask everyone whose ID number ends in 0 to raise their
hands. We walk down the line and give each of those people a number, in consecutive order,
that starts with 1 and corresponds to the seat labels. Upon receiving a number, each person
lowers his hand. After that, we ask for everyone whose last digit is 1 to raise a hand. Starting
with the lowest unassigned number, we give out a seat number to anyone holding up a hand.
We repeat this for the digits 2 through 9. Once we have given out all P seat numbers, we
instruct everyone to get up and go sit in the seat number they have been given. After everyone
has settled into their new seats, we do the same thing over again with successive digits of the
ID number, initiating a movement of people for each digit position, until the most significant
ID digit has been processed. At this point, the line of people is now in sorted order according
to ID number.

We can mimic this algorithm by spawning a number of threads equal to the number of records
to be sorted. This seems like it would be way too much overhead and, for very large amounts
of data, would require a large investment in system resources just to set up and manage the
threads. Since we will have a finite number of cores available, a better method, as we’ve seen,
is to create a pool of threads and modify the algorithm to fit this thread pool.

Before I jump into the thread pool version of this algorithm, let’s first look at how the serial
code works for this approach. If we can understand the serial algorithm, it will allow us to
achieve better insight into structuring the concurrent code. Example 8-21 shows code to
implement a serial variation of the distributed straight radix sort algorithm described earlier.

190 C H A P T E R 8 :   S O R T I N G

EXAMPLE 8-21. Second serial version of straight radix sort

#define mbits 4
#define M 16

void SerialStraightRadixSort(int *A, int N, int b)
{
 int i, j, pass;
 int offset, rank;
 int count;
 int *tA = new int[N];
 int *tempPtr;

 for (pass = 0; pass < (b / mbits); pass++) {
 offset = -1; //for 0-base index
 for (j = 0; j < M; j++) {
 count = 0;
 for (i = 0; i < N; i++) {
 if (bits(A[i],pass*mbits, mbits) == j) count++;
 }
 rank = offset + count;
 for (i = N-1; i >= 0; i--) {
 if (bits(A[i], pass*mbits, mbits) == j)
 tA[rank--] = A[i];
 }
 offset += count;
 }
// swap pointers to swap arrays to sort in next pass
 tempPtr = tA; tA = A; A = tempPtr;
 }
 free(tA);
}

The pass loop in Example 8-21 runs over each mbits-sized group of bits, from least to most
significant, within the key of each record. The offset variable keeps track of the next open
position in the tA array that will receive keys with matching mbits values. The j loop loops over
all possible patterns of mbits bits. The inner i loop body cycles through each key in A to count
the number of keys with matching bit patterns. Instead of a flag variable, we use a counter
(count) to tally up the number of keys with bits of interest that match the pattern under
consideration. Once we have this value, we can determine where the record with the highest
index and matching key portion will be copied into the tA array (rank = offset + count;), and
then traverse the records in reverse order to move those with keys that were counted in the
previous traversal. We update the offset variable for the next bit pattern to be searched for
within the keys. As before, we swap array pointers to prepare for the next pass with the next
most significant mbits of the keys.

This version of a serial straight radix sort is more amenable to transformation into a concurrent
version. Unfortunately, we still have an issue, in that the single count variable is not capable
of easily determining where threads are to copy records. As we’ve done before, in order to
compute the global count value, we can keep a local count and do a reduction sum on each local

R a d i x S o r t 191

copy into a global copy after all assigned keys have been examined (since not every key will
contain the bit pattern of interest, we might get away with a single global count and atomic
updates without too much contention between threads).

If I tilt my head 90 degrees to the right and look at this problem from a slightly different angle,
an idea pops into my brain. Rather than doing a reduction operation, what if we did a prefix
scan over the threads’ count variables? With the value in the “local” copy of count after the
prefix scan, each thread would have the index of the last element in the receiving array
(localRank = offset + localPrefixSumCount) into which it would copy the assigned records
having keys matching the pattern under consideration. Thus, each thread would be able to
concurrently move records that contain the current bit pattern of interest.

We can use a global array of count variables, one element per thread, to make the prefix scan
computation easy. Regrettably, there are a couple of execution dependences with the
concurrent algorithm. Before we do the prefix scan computation, we must be sure that all the
counts have been tallied. Likewise, before we start moving records, we must be sure the prefix
scan operation is complete. We’re going to need a barrier between counting keys that match
a bit pattern and another before moving the records whose keys matched.

OK, so we’ve got an algorithm sketched out from the serial code (Example 8-21) and the use
of a prefix scan over count values computed in each thread. Thinking about Simple Rule 5, you
may ask yourself, “Which threading model will be easiest to implement all the algorithmic
features needed?” The code is loop-based and needs barriers. OpenMP handles parallelization
of loops and has a barrier construct. In fact, there is an implicit barrier at the end of loop
worksharing constructs that might give us one of the needed barriers “for free.” The match
counting loop and the data movement loop cover the same range of elements from the data
array, but they run through the index values in a different order (the record movement loop
runs backward through the assigned chunk). The coding and debugging of the algorithm will
be simpler if we can guarantee that each thread counts the matches and moves records from
the same block of the array. I’m not sure if we can make that guarantee with OpenMP loop
worksharing constructs on loops that run in opposite directions of each other. We can use
OpenMP with thread IDs to explicitly decompose the array into blocks and assign blocks to
specific threads, but this defeats the spirit of OpenMP coding. Dividing the array of records into
blocks by thread IDs is standard operating procedure in an explicit threading model, but these
libraries don’t have a native barrier operator. Should we mangle OpenMP around and use it
like an explicit thread model just to get the barrier, or should we use a handcoded barrier
operator within an explicit threading model?

Before I answer that last question, I want to address a bigger performance issue with the
algorithm under consideration.

192 C H A P T E R 8 :   S O R T I N G

Reducing the number of data touches

The code in Example 8-21 ensures that all the records with keys containing 0000 are copied
before records with keys containing 0001. The use of prefix scan across the count values local
to each thread ensures that the concurrent algorithm (described earlier) will keep the stability
of the relative order of records whose keys have equal values in the bits of interest.

Each record is moved only once per pass through the data to be sorted, but the number of
times each key is examined is based on the size of the bit pattern of interest. For example, if
we set mbits to 4, there will be 16 traversals of the array block elements for counting matching
keys, and 16 traversals to determine which records are to be moved. Plus, there will be 32
barriers that each thread must pass through. And this will be repeated again for every separate
mbits-sized section of the keys. Algorithmically, we’re still in the realm of a constant asymptotic
upper bound on the number of times keys are examined and data is moved. Even so, it still
seems like a lot of extra processing.

Given a key with a pattern of 0110 in thread M, what information do we need in order to
compute where the record with this key will be copied? Thread M requires the following
information:

• The total number of records that have keys with patterns from 0000 to 0101.

• The number of records that have the 0110 pattern in threads 0 to M–1, plus any local
records that precede the record of interest within the block of data assigned to thread M.

We can use the sum of these two values to index the receiving array to locate positions for
copying records.

The first required value is kept in the offset variable in Example 8-21, but it’s only relevant
once the previous key bit patterns have been handled. Looking back at Example 8-20, notice
that, after the first i loop executes, the count array holds the number of corresponding key bit
patterns, all within a single traversal of the keys. If we performed an exclusive prefix scan on
count, the value of each item in the scanned array would be the number of records with
preceding key bit patterns. That is, after the exclusive scan, the value in the 0110 indexed
element of the count array holds the number of records for keys with patterns from 0000 to
0101.

With multiple threads, we can execute a single traversal of the data array, counting how many
of each key bit pattern is found, and then combine all the local count array results into a separate
global array, gCount. Running an exclusive prefix scan on the gCount array will give us the total
number of keys with bit patterns of lower values in the entire data set. This is the first value
we need.

We can compute the second value by running a prefix scan across corresponding elements of
the count arrays in thread ID order. If you imagine each thread’s count array as a row within a
2D array, arranged by increasing thread ID, a prefix scan down individual columns will
compute the number of keys with the same bit pattern in the local thread and all threads with

R a d i x S o r t 193

a lower thread ID. If you include the gCount array—set above the threads’ count arrays in our
2D arrangement—as part of this prefix scan, each thread’s count array will be the sum of the
two required values identified previously. We can use this result to directly compute the index
of all records that have been assigned to a thread, and, with one traversal, all records can be
moved to the proper location in the receiving array.

Did you get lost in those last three paragraphs? It’s a complex algorithm to try and understand
with just words. Whenever I’m designing a new algorithm, serial or concurrent, I like to draw
pictures in order to visually understand and check the data processing. So, I’ve included
Figure 8-11, which shows the scans I’ve just described and data movement from the first pass
(least significant digit) on a set of two-digit keys with four threads.

Thread 0

Thread 0

Thread 1 Thread 2 Thread 3

56 33 48 34 10 74 86 37 85 15 44 38 06 45 50 45 61 94 79 96 52 35 22 61
0

1
0 1 2

1
3

2
4 5

1
6 7

1
8

Thread 1 1 2 1 1 1

2

Thread 2 1 1 1 2 1

Thread 3 1 2 1 1 1

gCount 2 5 4 1

9 0 1 2 3 4 5 6 7 8 9

5 10 15 20

Thread 0 Thread 1 Thread 2 Thread 3

10 50 61 61 52 22 33 34 74 44 94 85 15 45 45 35 56 86 06 96 37 48 38 79
0 5 10 15 20

11

Exclusive scan with adjustments
for zero-based indexing

4 112

20fCount 3 10 15 2251 6 19-1

20 fCount3 10 15 2251 6 19-1

21 Thread 03 10 16 2261 8 190

22 Thread 13 12 17 2261 9 200

22 Thread 23 14 18 2262 10 201

22 Thread 35 15 19 2363 10 201

FIGURE 8-11. Straight radix sort concurrent algorithm

The division of keys among the threads is shown at the top of Figure 8-11. On the left side of
the figure are the count arrays, one per thread, for all possible digit patterns (0 to 9) of the least
significant digit (blank entries are 0 values). The gCount array is the result of the 10 reductions
(parallel sums) between corresponding elements of the count arrays. The gCount[0] element is
decremented by 1 to account for the 0-based indexing of the C language. The array shown
immediately below the gCount array, labeled fCount, is the result of performing an exclusive
prefix scan of the gCount elements and then setting the gCount[0] value to −1 for the 0-based
indexing. This array then “primes” the 10 prefix scans of the collected count arrays for each

194 C H A P T E R 8 :   S O R T I N G

thread. The results of these scans are shown on the right (the gray entries are the original 0
values and won’t be used in the data movement portion of the algorithm).

Along with the final prefix scan results (that used fCount), each thread traverses its assigned
block of the array in reverse order. For each key, the record is moved to the location in the
receiving array indexed by the value stored in the “local” version of the count array, indexed
by the key bit pattern. The local count element is then decremented for the next key that has
the same bit pattern. The array of keys shown at the bottom of the figure is the receiving array
after all threads have moved their records concurrently. This array will be used for the next
pass on the next most significant digits in the key.

A bit Gordian, yes? Maybe a little, but it doesn’t use anything you haven’t seen before (you
did read Chapter 6 before this, right?). Is it better? I think so. With the above counting and
data movement algorithm, the number of traversals required for each pass loop iteration will
be two, no matter how many bits are used for key bit patterns. This is much fewer than the 32
traversals for mbits set to 4. Use of this algorithm is a case where we would be willing to trade
a simpler code implementation with one that is more efficient.

The Concurrent Straight Radix Sort Solution

Example 8-22 shows the threaded ParallelStraightRadixSort() code that incorporates the
counting and data movement algorithm demonstrated in Figure 8-11. As you can see, this
example uses Pthreads.

EXAMPLE 8-22. Pthreads version of improved straight radix sort

#define mbits 4
#define M 16

void *ParallelStraightRadixSort(void *par)
{
 tParams *lpar = (tParams *) par;
 int N = lpar->num;
 int b = lpar->keylength;
 int tNum = lpar->tid;

 int i, j, pass, tBits;
 int *tempPtr;
 int start, end, offset;

 start = ((float)N/NUM_THREADS) * tNum;
 end = ((float)N/NUM_THREADS) *(tNum+1);
 if (tNum == NUM_THREADS-1) end = N;

 for (pass = 0; pass < (b / mbits); pass++) {
 for (j = 0; j < M; j++) lCount[tNum][j] = 0;
 for (i = start; i < end; i++)
 lCount[tNum][bits(A[i], pass*mbits, mbits)]++;

R a d i x S o r t 195

 pth_barrier(&b1);
 if (tNum == 0) { // one thread computes sums

// sum for each bit pattern from lCount totaled into gCount
 for (i = 0; i < M; i++) {
 gCount[i] = 0;
 for (j = 0; j < NUM_THREADS; j++)
 gCount[i] += lCount[j][i];
 }

// exclusive prefix of gCount into fCount
 fCount[1] = gCount[0]-1;
 for (i = 2; i < M; i++)
 fCount[i] = fCount[i-1] + gCount[i-1];
 fCount[0] = -1;

// prefix scan for each bit pattern from fCount through lCount
 for (i = 0; i < M; i++) {
 lCount[0][i] += fCount[i];
 for (j = 1; j < NUM_THREADS; j++)
 lCount[j][i] += lCount[j-1][i];
 }
 }
 pth_barrier(&b2); // other threads wait for all sum computations

 for (i = end-1; i >= start; i--) {
 tBits = bits(A[i], pass*mbits, mbits);
 tA[lCount[tNum][tBits]] = A[i];
 lCount[tNum][tBits]--;
 }
 pth_barrier(&b1);
 // swap pointers to swap arrays for next pass
 if (tNum == 0) { tempPtr = tA; tA = A; A = tempPtr; }
 pth_barrier(&b2);
 }
}

For me, the division of the array of records and addressing those elements with the explicit
threads (Pthreads) in Example 8-22 easily outweighs the implicit and explicit barrier
functionality of OpenMP. Plus, trying to guarantee that the same thread is assigned to a given
block of the array would make the OpenMP code more complex and less obvious.

In Example 8-22, the first i loop tallies the number of occurrences of all possible bit patterns
while traversing the assigned keys exactly once. At the end of each pass, the final i loop
traverses the assigned block of keys once more, in reverse order, and uses the prefix scans
results to index the receiving array. Between these two parts is the code that does the sums
and prefix scans of the counts (lCount) that are computed by each individual thread. The
lCount 2D array uses the first index to determine the thread that has access to that row. The
second index ranges over the number of bit patterns possible based on mbits. The thread, whose
assigned tNum is 0, uses the gCount array to hold the sums of counts (from lCount) for each bit

196 C H A P T E R 8 :   S O R T I N G

pattern and assigning fCount the results of the exclusive prefix scan on gCount. Once the
fCount array has been computed, this array will serve as the initial value of a prefix scan for
each bit pattern (down the columns) held in the lCount array.

Before and after these summation operations are two barriers (pth_barrier()). The first barrier
(b1) ensures that all threads have completed tallying their local counts, and the second (b2)
ensures that the computations of the sums and scans have completed before each thread starts
to copy records into the receiving array. Since the number of threads and the number of bit
patterns should be relatively small, the code uses only one thread to make all the summation
computations. If there is an increase in either the number of threads or the value of mbits, there
would be a point where execution of this part of the algorithm might be able to run with
multiple threads.

Finally, this example reuses the two barriers around the swap of the A and tA array pointers
(both now global arrays) and restricts the swap to be executed by one thread. This was done
in observance of Simple Rule 6. We can’t guarantee that all threads will be ready for the array
swap at the same time. Without the first barrier, some threads may be still copying records
within the for loop that precedes the pointer swap. The second barrier ensures that the arrays
have been swapped before the next pass takes place. Even with the two barriers in place,
restricting the array swap to a single thread ensures that the swap is done once.

N O T E
I hate to admit that I originally didn’t have the protections on the swap code. The sort worked

fine with one thread, but would never get close to a correct answer with two or more. This

bug plagued me for two hours. Once I figured out what should have been so obvious, I wished

someone had been around to smack me across the nose with a rolled-up newspaper.

Looking back, you may realize that the concurrent version given in Example 8-22 is closer to
the algorithm given in Example 8-20 than you might have expected. Both traverse the keys
twice per pass: once to count how many times each key bit pattern appears, and once to move
keys. It’s never a bad thing to get inspiration from other sources when designing concurrent
algorithms. In this case, going through the distributed-memory algorithm led to the insight of
using parallel sum and prefix scan. Ending up at a place that we can easily relate back to the
original serial code can give us confidence that we’ve done something right with this design
and implementation.

Design Factor Scorecard

How efficient, simple, portable, and scalable are the concurrent radix exchange sort algorithm
and the final straight radix sort code described earlier? Let’s review both algorithms with
respect to each of these categories.

R a d i x S o r t 197

Efficiency

When keys can be interpreted (at the bit level) as integer values, radix sort algorithms are
capable of delivering efficient sorting with the number of operations (compares and movement
of data) in linear proportion to the number of records to be sorted. All of the other sorting
algorithms we considered in this chapter require a number of operations that is proportional
to a polynomial function of the number of records to be sorted.

The examination and movement of data in the radix exchange sort is similar to that of
Quicksort. As the algorithm proceeds, the range of array elements over which the records may
be examined and moved becomes smaller and smaller, and, consequently, the required
amount of cache decreases. The straight radix sort carries out the traversal of data to count bit
pattern occurrences within keys, all within a contiguous range of memory. This yields a good
chance of prefetching data and minimal cache collisions, but once the keys have been counted,
the records are only examined once more per pass in order to determine where to copy the
records. Of course, records are moved to positions within the receiving array without regard
to any kind of efficient use of cache or memory access.

The low number of passes through the data versus the unpredictable memory access pattern
when copying records is the tradeoff for use of straight radix sort. This is true for both the serial
and concurrent versions of the algorithm. There is one faint ray of hope for the problem of
random data movement and potential cache thrashing between threads. If the size of records
is a multiple of the cache line size, then threads won’t share cache lines when moving records.

Simplicity

Radix exchange sort is as simple as Quicksort. The only major difference is how the
Partition() function determines where a record is placed for the next bit position to be
examined. The straight radix sort shown in Example 8-22 is a straightforward parallelization
of the first serial code given (Example 8-20). We’ve implemented a more complex summation
of counts in order to determine the index positions within the receiving array of each key held.
This is an example of possible tradeoffs between design factors. This more complex (and serial)
summation process allows us to realize a reduction in the number of traversals required to
count key bit patterns within a thread. This is much more efficient than the code shown in
Example 8-21, which counts only keys that match a specific bit pattern before moving those
matching records and traversing the keys for the next bit pattern.

Portability

OpenMP and TBB are not well suited for implementing the concurrent version of straight radix
sort. The algorithm requires that, within each pass, the key bit pattern counts computed for a
given block of records remain associated with that block for the summation operations and the
movement of records. You can use OpenMP code with API calls to have the same thread
execute on the same array elements for each pass. Doing this would require all the logic and
overhead computation of start and end index values that are required for an explicit threaded

198 C H A P T E R 8 :   S O R T I N G

implementation. For efficiency, TBB parallel algorithms don’t make available this level of
association of data to threads. We could use the task facility within TBB, but again, the structure
of the code would be so similar to an explicit threading solution that it doesn’t seem worth the
confusion and hassle of trying to bend one means of threading into a completely different one.

You can convert the threaded version of a straight radix sort to a distributed version. Locally
counting bit patterns within keys is easy enough. You can use broadcasts and scatter/gather
(or some other communication methods) to carry out the summation across distributed nodes.
Also, if each node knows the layout of the records across the nodes, you will be able to compute
the rank of the receiving node and the index within that node for each record to be moved.
The only really tricky bit is making sure that the receiving node understands where to place
the records that will be sent to it. We can resolve this by including, within the message, the
internal index that will hold the record being received. If the communication API has the ability
for one-way communication, the sending node can simply “write” the records to be moved
into the separate receiving array on each node.

Scalability

The two radix sort algorithms that we have discussed are readily scalable. Radix exchange sort
has the same scalability properties as Quicksort, and while straight radix sort has memory
issues, those issues won’t get better, but they won’t get worse with more threads or more data.

R a d i x S o r t 199

C H A P T E R N I N E

Searching

AS I MENTIONED AT THE BEGINNING OF CHAPTER 8, IT HAS ALWAYS BEEN A POPULAR CLAIM

that more than 80% of all computing cycles are devoted to the process of sorting. This was
especially true when mainframes were just about the only computers around and a majority
of these were doing business-centric computations. Querying and managing databases, payroll,
loan applications, medical billing, and other such processing had names and ID numbers
associated with records that needed to be sorted.

Today, there is still quite a bit of sorting going on all the time (you still want to collect your
paycheck, and the security device supplier still needs to know how many THX-1138/GL steam-
powered tasers are on hand). With the advent and popularity of search engines on the Internet,
I think that searching has certainly become more high-profile and also accounts for a bigger
slice of the total computing cycle pie.

In this chapter, I’ll discuss two algorithms you can use to search through a collection of data
and how to make them concurrent to decrease the time needed to locate items of interest. For
simplicity, I will assume that all keys within a data set to be searched are unique. Strategies for
dealing with multiple duplicate keys will be mentioned, but the implementation details are left
to you. More complex or proprietary searching techniques (e.g., Google, Lucene), while
interesting, are outside the scope of this book (and are typically corporate trade secrets that I
couldn’t discuss even if I knew them).

Unsorted Sequence
There are two types of data: sorted and unsorted. Let’s consider unsorted first. A stack of books
that has fallen over into a pile, words in a letter to the editor, or a group of people at a party
are all examples of unsorted data sets. If you wanted to find your copy of The Time Machine,
you would start checking titles of books one at a time from the pile; if you wanted to know
whether the phrase “fiscal conservative” was in a letter, you would start reading from the
beginning and look for that phrase; or, if you wanted to find out who owned the SUV blocking
your car when you’re ready to leave the party, you would approach each person and ask him
if he was the owner. (Sure, in this last example you could make a big, loud announcement
calling for the identity of the owner, but let’s assume you want to leave discreetly and not let
the hostess know you are ducking out early.)

In each case, the algorithm is to simply start at one end of the data set and examine each item
in the set to determine whether it is the one you are interested in locating. If it is not, you go
on to the next item in sequence until you either find the item or run out of things to search.
If you forgot that you loaned your copy of The Time Machine to a friend, you look through all
of the books in the pile only to discover that your copy is not there.

Example 9-1 contains the LinearSearch() function to examine an array of integers (like so many
simple examples before this) to determine whether a specific value (key) is contained in the
array (A). The function will return the index (position) of a found element or a value of −1 in
the case that the key value is not contained in the array. The value −1 signifies that an item

202 C H A P T E R 9 :   S E A R C H I N G

does not have a matching key, since 0 is a valid index. Any integer index value not within the
bounds of the search array would work.

EXAMPLE 9-1. Linear search code to look through unsorted data

void LinearSearch (int *A, int N, int key, int *position)
{
 int i;
 *position = −1; // assume not found

 for (i = 0; i < N; i++) {
 if (A[i] == key) {
 *position = i;
 break;
 }
 }
}

To write a concurrent version of the linear search algorithm, we’ll use a data decomposition
approach. The problem involves a large collection of data, and each element of the data is to
be handled in exactly the same way: compared against the search key for a match. From the
simple code in Example 9-1, we can divide the array into some number of chunks. Each chunk
would be assigned to a thread that would compare keys to the search key and update the global
position variable if the comparison ever found a match. Example 9-2 shows a concurrent
version of LinearSearch() using OpenMP.

EXAMPLE 9-2. OpenMP version of linear search algorithm

void LinearSearch (int *A, int N, int key, int *position)
{
 int i;
 *position = −1; // assume not found

#pragma omp parallel for
 for (i = 0; i < N; i++) {
 if (A[i] == key) {
 *position = i;
 }
 }
}

There are two things to note about the code in Example 9-2. The first is that there is no added
synchronization to protect access to the position variable, even though this shared memory
location is being updated within a parallel region. Do we need to add such protection? Only if
there is potentially more than one instance of an array item matching the search key. Since
I’ve stated at the beginning of the chapter that each key within the example data sets will be
unique, we know that, at most, only one array item matches my search and only one thread
will be given the data chunk containing that key. Thus, no protection of the update to
position is needed.

U n s o r t e d S e q u e n c e 203

What if duplicate keys were allowed and we wanted to find the lowest indexed item that
contained such a key? The serial code in Example 9-1 already solves this problem. With the
OpenMP version given in Example 9-2, we have the chance that multiple threads will want
to update position (or the same thread may attempt to update the variable multiple times).
Certainly, without synchronization of any kind, there is no way to guarantee that the last value
deposited into position will be the value of the lowest index containing a matching key. Even
if access to position were synchronized, any simple locking object is not going to guarantee
that the correct value is the final or only value written. We need something a little more
sophisticated.

One solution that comes to my mind is to create a “local” version of position for each chunk
that is updated only when a matching key is found in the data chunk and no previous match
has been seen in the chunk. After searching all the chunks concurrently, we can run a
reduction on the “local” position variables to find the minimum positive value. This minimum
positive value will be the first instance of an array element with the matching key. If all the
position values are −1, the key was not found.

The second point to notice in Example 9-2 is that the break statement from the serial version
has been taken out of the loop body. If it is there to be found, you invariably find what you
are seeking in the last place you look. The break stops the serial search when a match is located.
Unfortunately, the OpenMP loop worksharing construct is only valid on loop bodies that are
structured blocks (one entry, one exit). The break statement gives the loop body two exit points,
which no longer qualifies it as a structured block. Once the matching record is found, the
OpenMP thread will continue to search through the rest of the assigned chunk. Is this a bad
thing?

Well, if you have an array of N items to be searched, the serial code will look through only
the number of items needed until a matching key is found, or the entire array if there is no
match. On average, this will execute N/2 comparisons. The OpenMP version looks through all
data items regardless of the data size or location of a match. With multiple threads and a
separate core for each one, say p of them, the elapsed time for executing the parallel search
will be on par with the time needed to perform N/p serial comparisons. If the number of cores
is larger than 2, the OpenMP algorithm will, on average, give better overall performance,
especially as the size of the data set, N, gets bigger.

Curtailing the Search

Consider the case where your application will be running the search repeatedly. If a large
majority of searches are locating items somewhere in the first 10 slots of a 10,000-item array,
the concurrent code given in Example 9-2 will not compare favorably with the serial version.
You might want a version that can halt the search of the thread that locates the item to be
found and that will then inform all other searching threads of the discovery so that they might
quit early, too. To do this, we’ll use a global flag (similar to the thread pool termination flag

204 C H A P T E R 9 :   S E A R C H I N G

we used in the Quicksort algorithm in Chapter 8) to signal that the search can be terminated
early.

Once a thread has found the array element with the matching key, that thread can set the
global flag. All threads should look first at the global flag before doing a comparison of the
search value and the key of the next array element under consideration. If the flag has been
set, there is no need to do any more comparisons and the thread can stop searching; if the flag
is not set, more searching is required and the threads must do the current key comparison.
Since OpenMP doesn’t make it easy to prematurely terminate threads in the team, I’m going
to switch over to Windows Threads for the implementation.

I’ve spread out the relevant code segments for this example in three parts. The first,
Example 9-3, displays the global declarations. Example 9-4 has the code for the linear searching
function as well as the helper function to assist in unpacking the function parameters.
Example 9-5 shows the code that creates the threads and determines the results of the search.

EXAMPLE 9-3. Global declarations used for concurrent linear search

typedef struct {
 int *A; // pointer to the array to be searched
 int num; // total number of items in the array
 int key; // search key value
 int threadID; // thread ID
} sParam;

BOOL Done = FALSE; // initialize to NOT FOUND

The global declarations in Example 9-3 include only two things. The first is the definition of
the struct to hold the parameters needed to execute the concurrent linear search. These include
a pointer to the array to be searched (A), the number of items in the array (num), the key value
of interest (key), and the ID number of the thread (threadID). If you compare the contents of
this struct to the list of actual parameters in Example 9-1, you will notice that the first three
are the same, but we’ve replaced position with the thread ID. We could have easily added a
position field in the struct in order to return the index of an array element found to have a
key match. However, I’ve got another idea about how to return this value to the point where
the search was initiated, which I’ll discuss in a page or two.

The second item shown in Example 9-3 is the flag (Done) used to signal when the record with
a matching key is found so that all threads can terminate the search before all elements within
the assigned chunk have been examined. This is a BOOL variable that is set to TRUE whenever a
thread finds the matching record. Example 9-4 shows how to use this flag to cut short the
search across multiple threads.

Like many previous examples, we’re going to assume that the number of threads has been
defined (NUM_THREADS) or would be assigned to an appropriate global variable. We will also
assume that the number of elements in the array has been determined before threads are

U n s o r t e d S e q u e n c e 205

created and the search is initiated. Example 9-4 does not show the definition of these two
values.

EXAMPLE 9-4. Linear search function and helper function to be threaded

void LinearPSearch (int *A, int s, int e, int key, DWORD *position)
{
 int i;

 for (i = s; i < e; i++) {
 if (Done) return;
 if (A[i] == key) {
 *position = i;
 Done = TRUE;
 break;
 }
 }
 return;
}

unsigned __stdcall pSearch (LPVOID pArg) // Helper function
{
 sParam *inArg = (sParam *)pArg;
 int *A = inArg->A;
 int N = inArg->num;
 int key = inArg->key;
 int tNum = inArg->threadID;

 int start, end;
 DWORD pos = −1;

 start = ((float)N/NUM_THREADS) * tNum;
 end = ((float)N/NUM_THREADS) *(tNum+1);
 if (tNum == NUM_THREADS-1) end = N;

 LinearPSearch(A, start, end, key, &pos);
 free(pArg);
 ExitThread(pos);
}

Example 9-4 contains the function that performs the linear search (LinearPSearch()) and the
function that is called when threads are created (pSearch()). The helper function pSearch() has
no equivalent in the serial code. The purpose of this function is to unpack the parameter list
from the single allowed parameter, to call the function that actually does the search
(LinearPSearch()), and to ensure that the results are made available to the code that will use
those results.

The four parameter values arrive to the pSearch() function in a struct of type sParam. The four
parts of the struct are assigned to local variables of the appropriate type. Also declared locally
are a start and end to define the chunk of the data array that will be statically assigned to the
thread, and a variable to hold the position (pos) of the array element that has a matching key
value. Once the parameters are unpacked, the helper function computes the bounds for the

206 C H A P T E R 9 :   S E A R C H I N G

chunk of the array that the thread should search. The values assigned to start and end are based
on the thread ID number (threadID), the number of threads (NUM_THREADS), and the number of
elements in the array (N). The linear search function is then called.

Upon termination of LinearPSearch(), the thread returns the value of pos through
ExitThread() from pSearch(). If the thread found a key match, that index position will be
returned. Otherwise, the initial value of −1 will be returned to indicate that the thread did not
find the key value within the chunk of array assigned.

The LinearPSearch() function has three differences from the serial version of the algorithm
shown in Example 9-1. The first is that the variable to hold the position index, if needed, is
not initialized here. This variable was initialized in the helper function. The second is that the
parameter for the number of items within the array has been replaced by the start and end
index values computed in the helper function.

Finally, the test and setting of the Done variable has been added in order to signal all threads
when the search has yielded a positive match and can be halted. Before each comparison of
the search key and a new item from the array, the status of the Done flag is tested. If it is set to
TRUE, the item has been found and the thread simply exits the LinearPSearch() routine to return
processing back to the helper function. If Done is still FALSE, a key comparison is made; if that
key comparison finds a match, the position of the matching item is stored in pos and the value
of Done is set to TRUE.

Do we need to protect access to Done? We have not added any mutual exclusion code around
the code that reads or writes the Done value. We’ve got all threads reading the contents of this
variable during the search. If there is no matching item in the array, there is no race condition.
However, if there is a match, one of those threads will update the value of Done to TRUE. Won’t
this screw up any of the threads that are only reading the contents of Done?

Fortunately, it won’t. This is another example of a benign data race. The worst that could
happen would be one or more of the reading threads not seeing that the value of Done had
changed before executing another iteration of the search loop. These threads would, however,
pick up on the fact that Done was set to TRUE on that next iteration. Thus, some threads might
execute one unnecessary loop iteration and examine one more element from the array than
needed. The fix to correct this data race will be much worse than the consequence of one
superfluous key comparison.

EXAMPLE 9-5. Code segment to create threads and examine results of search

for (i = 0; i < NUM_THREADS; i++) {
 sParam *pArg = new sParam;
 pArg->A = S;
 pArg->num = NumKeys;
 pArg->key = sKey;
 pArg->threadID = i;
 tH[i] = (HANDLE) _beginthreadex(NULL, 0, pSearch, (LPVOID)pArg, 0, NULL);
}

U n s o r t e d S e q u e n c e 207

WaitForMultipleObjects(NUM_THREADS, tH, TRUE, INFINITE);

for (i = 0; i < NUM_THREADS; i++) {
 GetExitCodeThread(tH[i], (LPDWORD) position);
 if (*position != -1) {
 printf("key = %d found at index %d\n", sKey, *position);
 break;
 }
}
if (*position == -1) printf("key = %d NOT found.\n",sKey);

The code in Example 9-5 is just enough to demonstrate how the declarations in Example 9-3
and the two functions in Example 9-4 could be used. At the entry point to this code segment,
I have assumed that we have initialized the array to be searched (S) with numKeys keyed items
and that we have decided on which key value to search (sKey). The first for loop allocates a
new sParam object and loads the fields with the appropriate values. Next, a thread is spawned
on the pSearch() function with a pointer to the newly allocated and loaded sParam object as the
single parameter.

After all search threads have been launched, the thread executing the code in Example 9-5
waits for the termination of all the search threads. It examines the return code from each search
thread to determine whether any of the threads found a key matching the search key. The
GetExitCodeThread() function retrieves the return code of a thread. If any of the search threads
returns a value other than −1, this will be the index of the found item within the array; if all
threads return a −1 value, there is no record in the array that has a matching key. This simple
example just prints the results of the search. I expect that the location of the search item will
be used for something more substantial within an actual application.

Design Factor Scorecard

How efficient, simple, portable, and scalable is the concurrent version of the linear search code
described earlier? Let’s review the algorithm with respect to each of these categories.

Efficiency

The static allocation of chunks of the array to be searched will be good for cache utilization
within each thread. The access pattern per thread is very regular, as it was in the serial version,
and could take advantage of any cache prefetching technology that exists on the processor.
Plus, there are no updates to the search data, so there would be no false sharing overheads
from the search.

The overhead introduced by adding the helper function should be minimal. This routine is
called only once (when each thread is created) and simply pulls out parameters from a
struct and ensures that the search results from the LinearPSearch() function are propagated
correctly.

208 C H A P T E R 9 :   S E A R C H I N G

There is one glaring bit of added overhead, though. This is the additional test to determine
whether a different thread has found a match. As the code stands in Example 9-4, there are
two conditional expression evaluations per loop iteration, as opposed to the one needed in the
OpenMP version (Example 9-2). Of course, the extra evaluations will save the execution of
unneeded iterations. There is a threshold that is used to decide whether you can reduce
execution time by terminating the search as early as possible (with all the additional time
needed for the extra tests) versus just running through all assigned records. I can’t tell you
where that line sits or how to figure out where it might be in every case. You could do some
analysis about average cases and number of iterations executed per thread to get some kind of
idea about what to expect. Nevertheless, the analysis results would change with the number
of threads or the size of the data or the relative execution times for each type of comparison,
among other factors.

Accessing a global variable (Done) that other threads are accessing could take more time than
accessing values within a core’s local cache, which are not being touched by other threads.
Thus, we should cut down on the number of times a thread accesses global variables, which is
never a bad idea anyway. For the LinearPSearch() function, one obvious modification would
be to perform the search-terminating test at regular intervals larger than once per iteration.
For example, every 10th iteration might be a good time to test. The code in LinearPSearch()
would have a nested loop, where the inner loop would test for the key matches on 10
consecutive array items and the outer loop would choose the index of every 10th item for the
inner loop to start from (we’ve got to be sure to include code that will pick up those spare
iterations for when the original chunk size is not evenly divisible by 10). Before the inner loop
executes, a thread tests to see whether another thread has already found a matching item. At
worst, each thread might then waste up to 10 search comparisons, but we’ve cut the extra
conditional expression evaluations to 10% of what they were.

If you implement the scheme just described, I would recommend that you use a tunable
parameter for the number of iterations to be executed per early termination test. Not every set
of data and number of threads will get the best performance with the same fixed value. Either
computing this value based on the execution characteristics or tuning by hand to find an
acceptable value will help your application maintain good execution performance across a wide
range of situations.

Simplicity

Besides the purpose just stated, one other reason to use a helper function is to keep the code
doing the actual computations as close as possible to the serial algorithm. Even if we required
wholesale changes in the source code of the computation function, the helper function can at
least reduce the clutter of unpacking the parameters from a struct. Any chance to keep code
as similar to the original serial code—like being able to retain the actual parameter list of a
function—will reduce the number of maintenance hurdles that we need to overcome later in
the life of the application.

U n s o r t e d S e q u e n c e 209

As I was going over the code in Example 9-4, I realized that the break statement is redundant
here since the next iteration of the loop will force a return from the function based on the
value of Done. However, since it is included in the serial code, I elected to keep it in the threaded
version. It will cut out a few processing cycles, but, more importantly, it keeps the code as close
to the original serial version as possible. My hope is that this will allow a more rapid
understanding of the concurrent code by some future programmer charged with making
updates to the application.

Portability

You can easily translate the Windows Threads code to POSIX threads. You could use a global
flag to prevent unnecessary key search comparisons within an Intel TBB parallel_for
algorithm, too.

Trying to terminate a search early within a message-passing environment would be a
performance nightmare. Once the search key was broadcast to each process, keeping an eye
out for a signal from another process would require some form of collective communication
function call, and the time needed to do that compared to the time to continue searching locally
would be prohibitive. It will be much more efficient and scalable to do all local searching and
then use some form of reduction communication in order to identify the process and location
of an item with the matching key.

Scalability

As with other algorithms presented, there is a point of diminishing returns on fixed data set
sizes and increasing numbers of cores and threads. However, the scalability of the algorithm is
very good, since the search computations are all independent of each other. The early
termination tests on the Done variable, as discussed earlier in “Efficiency”, would be the biggest
potential drag on performance with an increase in the number of threads. Fortunately, there
is no need for mutually exclusive access to the variable, since no more than one thread will
update the value. Needing some form of lock object in order to access (read and write) Done
would not have been acceptable with regards to maintaining scalable performance.

A coding change that you could implement for a small improvement in scalability of the code
given in Example 9-5 is to first look to the Done variable before looking at the return codes from
each thread. If Done is still FALSE, no matching item was found and there is no need to examine
the return codes. If Done is TRUE, a run-through of the return codes is executed. Alternately, if
Done were an integer, you could use it to indicate which, if any, thread found the search item
by returning the thread ID, which is the index into the thread handles array, tH.

Binary Search
If your data collection is sorted on a key, you can do better than simply starting at one end of
the array and looking at each key until you either find what you are looking for or reach the

210 C H A P T E R 9 :   S E A R C H I N G

end. Binary search examines the key of the element at the midpoint of the array to be searched.
If there is a search key match, the algorithm returns the index of the matching item. If there
is no match, the search key will be either greater than or less than the midpoint key value.
Whichever condition holds determines which half of the search array will contain the matching
key, if such a record exists. A binary search is executed on the chosen half. If there is only one
element in the search array and it doesn’t match the search key, a matching item is not
contained in the array. Example 9-6 gives a serial version of the binary search algorithm on
an array of integers.

EXAMPLE 9-6. Iterative version of binary search algorithm

void BinarySearch (int *A, int lo, int hi, int key, int *position)
{
 int mid;
 *position = −1; // assume not found

 while (lo <= hi) {
 mid = (lo + hi) / 2;
 if (A[mid] > key)
 hi = mid - 1;
 else if (A[mid] < key)
 lo = mid + 1;
 else {
 *position = mid; // found
 break;
 }
 }
}

The parameters lo and hi are the lower and upper index values of the initial search array. These
values are modified as the algorithm proceeds to pare down the current bounds of the search
array. If the search array becomes empty, the while conditional expression is false and no
matching item was found. Otherwise, the midpoint index is computed and that element is
tested against the key value. Depending on the results of the comparison against the search
key, either hi or lo will be updated or the array item with a matching key has been found. In
the latter case, the break statement prevents any more key comparisons after the mid value has
been stored in position.

We could write a recursive version of BinarySearch(). However, since recursive codes are
typically not easy to translate into concurrent equivalents, we’ve started with an iterative
version.

To write a concurrent version of binary search, we can take the same approach we did with
linear search in Examples 9-3 through 9-5. We can take the large data set, divide it into
nonoverlapping chunks, and assign each chunk to a thread for a local binary search. As in
Example 9-4, a helper function will take a single struct parameter and pull out the component
parameters for the search function, determine the lo and hi index points for each chunk, set
the initial guess of position to −1, and call BinarySearch() on the assigned chunk. Since binary

B i n a r y S e a r c h 211

search is so much faster than linear search, O(log2n) versus O(n), we don’t need to bother with
any additional code to halt external searches once a thread has found the matching item.

Of course, only one thread will find a matching item. All others will simply run through the
algorithm on the assigned chunk and not find a match. If this implementation scheme is
enough for you, you can stop reading this chapter and go on to the next one. Before starting
that next chapter, take some time to stretch and get something to drink. Your legs will
appreciate it.

Now, for those of you who have chosen to keep reading, I’m going to present a different usage
of multiple threads to perform a binary-like search. However, you might also want to take a
moment to stretch and get something to drink before we go on.

If we have N threads available, we can develop a concurrent N-ary search. This search identifies
N well-spaced points within the search array bounds and compares the key of the
corresponding records to the search key. Each thread does one of the N comparisons. There
are three possible outcomes from these comparisons. The first is that the item of interest is
found and the search is complete; the second is that the item key examined is less than the
search key; the third is that the item key examined is greater than the search key. If no search
key match is found, a new, smaller search array is defined by the two consecutive index points
whose record keys were found to be less than the search key and greater than the search key.
The N-ary search is then performed on this refined search array. As with the serial version of
binary search, the process is repeated until a match is found or the number of items in the
search array is zero. A pictorial description of this algorithm is shown in Figure 9-1.

T0

(a) 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71

T1 T2 T3

(b) 43 47 53

T0 T1 T3T2

FIGURE 9-1. N-ary search example with four threads

Given the sorted array of prime numbers in Figure 9-1 (a), let’s say we want to determine
whether the value 53 is in the array and where it can be found. If there are four threads (T0
to T3), each computes an index into the array and compares the key value found there to the
search key. Threads T0, T1, and T2 all find that the key value at the examined position is less

212 C H A P T E R 9 :   S E A R C H I N G

than the search key value. Thus, an item with the matching key value must lie somewhere to
the right of each of these thread’s current search positions (indicated by the circled arrows).
Thread T3 determines that the examined key value is greater than the search key, and the
matching key can be found to the left of this thread’s search position (left-pointing circled
arrow). Notice the circled arrows at each end of the array. These are attached to “phantom”
elements just outside the array bounds.

The results of the individual key tests define the subarray that is to become the new search
array. Where we find two consecutive test results with opposite outcomes, the corresponding
indexes will be just outside of the lower and upper bounds of the new search array.
Figure 9-1 (a) shows that the test results from threads T2 (less than search key) and T3 (greater
than search key) are opposite. The new search array is the array elements between the
elements tested by these two threads. Figure 9-1 (b) shows this subarray and the index
positions that are tested by each thread. The figure shows that during this second test of element
key values, thread T3 has found the element that matches the search key (equals sign in circle).

Consider the case where we want to find a composite value, like 52, in a list of prime numbers.
The individual key results by the four threads shown in Figure 9-1 (a) would be the same. The
subarray shown in Figure 9-1 (b) would have the same results, except that the test by T3 would
find that the key value in the assigned position was greater than the search key (and the equals
sign would be a left-pointing arrow). The next round of key comparisons by threads would be
from a subarray with no elements, bounded by the array slots holding the key values of 47 and
53. When threads are confronted with the search of an empty search space, they know that
the key is not to be found.

This is obviously more complex than a simple binary search. The algorithm must coordinate
the choices of index positions that each thread needs to test, keep and store the results of each
test such that multiple threads can examine those results, and compute the new search array
bounds for the next round of key tests. From this quick description, it’s clear that we’ll need
some globally accessible data and, more importantly, we need a barrier between the completion
of the key tests and the examination of the results of those tests.

But First, a Serial Version

Though it doesn’t make much sense to implement the N-ary search algorithm in serial, we’re
going to do it anyway. By examining the serial version first, we can identify all the pieces and
parts of the algorithm, which is an adaptation of the CREW SEARCH algorithm from Selim
Akl’s The Design and Analysis of Parallel Algorithms. Once you’ve got that down, creating a
concurrent version using OpenMP will be very straightforward. (Oops! I’ve wrecked my
reveal.) Example 9-7 contains a serial version of N-ary search.

B i n a r y S e a r c h 213

EXAMPLE 9-7. Serialization of N-ary search algorithm

void NarySearch (int *A, int lo, int hi, int key, int Ntrvl, int *pos)
{
 float offset, step;
 int *mid = new int[Ntrvl+1];
 char *locate = new char[Ntrvl+2];
 int i;

 locate[0] = 'R'; locate[Ntrvl+1] = 'L';
 while (lo <= hi && *pos == −1) {
 int lmid;
 mid[0] = lo - 1;
 step = (float)(hi - lo + 1)/(Ntrvl+1);
 for (i = 1; i <= Ntrvl; i++) {
 offset = step * i + (i - 1);
 lmid = mid[i] = lo + (int)offset;
 if (lmid <= hi) {
 if (A[lmid] > key)
 locate[i] = 'L';
 else if (A[lmid] < key)
 locate[i] = 'R';
 else {
 locate[i] = 'E';
 *pos = lmid; } // found
 }
 else {
 mid[i] = hi + 1;
 locate[i] = 'L';
 }
 }
 for (i = 1; i <= Ntrvl; i++) {
 if (locate[i] != locate[i-1]) {
 lo = mid[i-1] + 1;
 hi = mid[i] - 1;
 }
 }
 if (locate[Ntrvl] != locate[Ntrvl+1]) lo = mid[Ntrvl] +1;
 }
}

The parameters to the NarySearch() function are the array to be searched (A), the initial index
bounds of the search space (lo and hi), the value of the key the algorithm is attempting to find
(key), the number of intervals to divide the search array into each round (Ntrval), and the
pointer to return the index position of a record with a matching key (pos). The code assumes
that the pos value has been initialized to −1 before calling this function. The Ntrvl parameter
is likely going to be the number of threads; I will explain why we’re implementing the function
with this parameter when I discuss the concurrent solution.

This function declares two arrays. These will hold the index of the key test element (mid) and
the results of the corresponding key comparison (locate). I’ve chosen to use a character array
for the latter to denote whether the element’s key is too big, too small, or just right. The letters

214 C H A P T E R 9 :   S E A R C H I N G

indicate that the desired element with the matching search key will be found to the right (R)
or to the left (L), or that the search and item keys are exactly equal (E). Any three values can
be used here, as long as two consecutive elements, when compared, are found to have either
the same value or different values. The locate array has two more slots than the number of
intervals to be used. The first and last elements mimic the key comparison results from the
phantom array slots just outside the bounds of the search array and are initialized to R and L,
respectively.

The while loop continues to iterate a new search round as long as there is at least one array
item to be searched and no element of the array has been found to have a matching key. The
mid[0] element holds the index of the leftmost bound of the search array, and step is the number
of slots between each element to be tested in the current round. Note that the code declares
step as a float rather than an integer. By computing indexes with floating-point numbers and
truncating any fractional parts before utilizing the value, we can ensure that the computed key
test indexes are more equitably spread out within the search array (we used the same scheme
for computing chunk boundaries within the reduction algorithm in Chapter 7). In addition,
this code includes the lmid variable to give threads a local value for holding the index value of
a key to be compared against the search key. This addition follows Simple Rule 7.

The body of the while loop has three separate parts. The first for loop computes an offset into
the search array for each interval and stores the computed index into the corresponding
element of mid (if the computed index is outside of the search array, the saved value is hi + 1
and this will be treated like the rightmost phantom element). Next, the key found at each of
these positions is compared to the search key and the relationship of the location of the search
key to the element key is recorded in the corresponding locate element. If there is a match on
the search key, the value of pos is updated with the index of the matching element.

Once all of the test indexes are computed and the results of the key comparisons have been
noted, the second for loop checks all consecutive pairs of elements from the locate array to see
whether the characters stored there are different. As shown in Figure 9-1, this difference
indicates that the record that matches the search key will lie between the two corresponding
index points in the search array. When such a difference is found, the values of lo and hi are
updated to set the bounds of the search array for the next iteration of the while loop. The third
part of the while loop body does this same locate element test, but it does so with the rightmost
phantom index (Ntrvl + 1). If this value is different from the locate element of the final
computed test index, then only the lower bound of the search array needs to be updated.

Could there be more than one difference in the locate array? If the search key doesn’t match
any of the keys at the test index positions, the locate array will have only R and L characters.
This is shown in Figure 9-2 (a). In fact, there will be one or more Rs followed by one or more
Ls. Because the keys in the search array are sorted, all positions in locate to the left of the
rightmost R must also be Rs, and all positions in locate to the right of the leftmost L must be
Ls. If the search key is found, though, there will be two differences in the locate array, as shown
in Figure 9-2 (b). While this will cause the serial algorithm to update the lo and hi bounds

B i n a r y S e a r c h 215

twice, when the algorithm expects this to be done only once, the next while conditional
expression evaluation will yield FALSE. Thus, this extra bounds update will simply be discarded
as the NarySearch() function returns from a successful search.

(a) R R R R L L

Contents of locate array if key not found

(b) R R R R E L

Contents of locate array if key has been found

FIGURE 9-2. Example of the locate array contents for two different cases

At Last, the Concurrent Solution

Example 9-8 contains the OpenMP version of N-ary search. The main reason that we’re using
OpenMP for the concurrent version of NarySearch() is because of the need for two barrier
synchronizations. We need the first between the determination of the location of the matching
element from the data array and the search through the locate array to identify the difference
between two consecutive items. We need the second barrier between the update of lo and hi
and the start of the next iteration of the while loop. Of course, the decision to use OpenMP is
helped along by the fact that the algorithm has a data decomposition solution and uses for
loops for iteration within the while loop. The additions to the code from Example 9-7 have
been highlighted in bold.

EXAMPLE 9-8. OpenMP implementation of concurrent N-ary search algorithm

void NarySearch (int *A, int lo, int hi, int key, int Ntrvl, int *pos)
{
 float offset, step;
 int *mid = new int[Ntrvl+1];
 char *locate = new char[Ntrvl+2];
 int i;

 locate[0] = 'R'; locate[Ntrvl+1] = 'L';
#pragma omp parallel
 {
 while (lo <= hi && *pos == -1) {
 int lmid;
#pragma omp single
 {
 mid[0] = lo - 1;
 step = (float)(hi - lo + 1)/(Ntrvl+1);
 }

216 C H A P T E R 9 :   S E A R C H I N G

#pragma omp for private(offset) firstprivate(step)
 for (i = 1; i <= Ntrvl; i++) {
 offset = step* i + (i - 1);
 lmid = mid[i] = lo + (int)offset;
 if (lmid <= hi) {
 if (A[lmid] > key)
 locate[i] = 'L';
 else if (A[lmid] < key)
 locate[i] = 'R';
 else {
 locate[i] = 'E';
 *pos = lmid; } // found
 }
 else {
 mid[i] = hi + 1;
 locate[i] = 'L';
 }
 }
#pragma omp single
 {
 for (i = 1; i <= Ntrvl; i++) {
 if (locate[i] != locate[i-1]) {
 lo = mid[i-1] + 1;
 hi = mid[i] - 1;
 }
 }
 if (locate[Ntrvl] != locate[Ntrvl+1]) lo = mid[Ntrvl] +1;
 } // end single
 }
 } // end parallel region
}

The parallel region encloses the while loop, which means that each thread on the team will be
executing all iterations of the while loop (the curly braces on the parallel pragma aren’t strictly
needed, but they serve to point out the extent of the parallel region). For threads to keep in
sync with these iterations, the variables for lo, hi, and pos must be globally accessible to each
thread. This will ensure that the results of the while conditional test are the same in all threads
and that the threads will end the parallel region at the same time.

All threads share the step variable before the OpenMP loop worksharing construct begins, but
the initial assignment of step and mid[0] must be done in serial. The firstprivate clause will
create a private copy of this variable for each thread and initialize that copy with the value
computed outside of the worksharing construct. Having a local copy of step is useful if there
are fewer threads than intervals to check by avoiding multiple accesses of the global step by
each thread.

The computation of the test key indexes and the discovery of the correlation of key values
found at those points are all independent. Thus, the loop worksharing construct will divide up
the intervals (via division of the loop iterations) among the threads of the team. If the number
of intervals (Ntrvl) is equal to the number of threads, we will get one interval per thread; if
there are more intervals than threads, multiple intervals will be assigned to threads. By

B i n a r y S e a r c h 217

including the interval parameter (Ntrvl), we can better control the granularity of computations
assigned to each thread.

You may find that the overhead of doing only one interval per thread is too high versus the
amount of computation. So if you specify, say, 10 intervals per thread, there is relatively less
OpenMP overhead per computation per iteration of the outer while loop per thread. In addition,
you execute fewer iterations of the while loop with 80 intervals than with 8. This assumes that
you have a data set large enough to benefit from probing 80 locations.

Using the single worksharing construct makes certain that the second for loop and the last
boundary check of the algorithm will be executed in serial. We’re using single rather than
master for the implicit barrier to ensure that values for lo and hi are updated before threads
undertake the next iteration of the while loop. Actually, only the last boundary check is a serial
operation. We could put the second for loop in a loop worksharing construct, especially if we
have more intervals than threads. However, for a small number of intervals, there will be less
memory traffic into cache lines holding the locate array if one thread alone does the check.

Since only one interval test will find a difference in consecutive locate elements, only one
thread will update the lo and hi values. As a result, even if we ran the second for loop
concurrently, there would be no need for mutually exclusive access and no need for any
synchronization objects. This is true even when a matching element from the array is found
and there are two differences in locate. Yes, this could lead to the situation of a race to store
conflicting values into lo and hi, but the while condition test immediately after will halt the
search, since the item of interest has been found.

Design Factor Scorecard

How efficient, simple, portable, and scalable is the concurrent version of the N-ary search code
described earlier? Let’s review the algorithm with respect to each of these categories.

Efficiency

You can use the Ntrvl parameter to affect the memory traffic of this algorithm by cutting out
the need to share cache lines for updates. Elements from both the locate and the mid arrays are
written during the first for loop. By setting the number of intervals, the loop iterations can be
assigned such that no threads will share cache lines holding elements from the locate or mid
arrays. There will be some overlap of cache line access in the second loop, but these accesses
will be read-only (or done by a single thread).

The declaration of lmid within the while loop gives each thread a local copy. There are up to
four read accesses of this variable within the body of the first for loop. If each of these accesses
were to use the mid[i] location instead, there would be a potential false sharing conflict while
other threads were attempting to update the mid array with a computed test index. Having the
local computed value should reduce the chance of false sharing during this portion of the
algorithm.

218 C H A P T E R 9 :   S E A R C H I N G

Since no synchronization objects are needed, the only other efficiency issue for this code is the
granularity. The amount of work involved per for loop iteration and the number of iterations
assigned to threads will be direct factors in the overall performance. As I’ve discussed, you can
adjust these proportions by changing the value of the Ntrvl parameter. I don’t have any advice
on how to determine this parameter, except to say that this will depend on the size of the array
to be searched and the number of threads and cores available. You should test different
parameter values and use the ones that give the best results.

Simplicity

The concurrent solution presented here is as simple as the serial algorithm (and I hope the
serial version is simple enough to understand). In the body of the first for loop, the computation
of offset is based on the fixed value of step and the loop iteration variable, i. This makes each
computation of offset independent of previous or future calculation of the offset into the
search array. Keeping such details in mind when developing serial code that will ultimately be
made concurrent, or when surveying serial code for concurrency opportunities, will make the
transformation from serial to concurrent much easier.

N O T E
You might have realized that I could have coded the function in Example 9-7 to return an

int and have a return of lmid when a key was found to be equal (at the “found” comment).

If I were writing the algorithm only for serial, if I’d ever write a serial N-ary search, I would

have done it that way. Since I was ultimately going to turn the code into a concurrent version,

I deliberately put in the extra work that I knew would be handled by multiple threads. I guess

this is an instance of Simple Rule 8 and also of developing and debugging in serial before

parallelizing the code.

Portability

You could use the parallel_for algorithm from TBB to do the key tests that update the global
mid and locate arrays. If the second for loop is not done in serial, you could use a second
parallel_for algorithm. For an implementation with an explicit threads library, you would
need global access to the mid and locate arrays, rather than declaring them within the
NarySearch() function. Also, the lo and hi variables would need to be shared.

Distributed-memory platforms are going to be better off with each process doing the binary
search on the local data. As a first test, the algorithm could test keys of elements at the lower
and upper bounds of the assigned array chunk. If the key is not to be found between those
items, then the process doesn’t need to do anything more until the search is completed on the
node that would contain the record with a matching key. Trying to implement something like
the algorithm in Example 9-8 would lead to too much communication of data compared to
the amount of computation that would be done.

B i n a r y S e a r c h 219

Scalability

The granularity of the computations assigned to each thread will directly affect the execution
time and performance. By divorcing the number of intervals from the number of threads, you
can affect the granularity in a positive way by setting the number of intervals based on the
current data set size and number of cores available. This will also make the algorithm more
easily adaptable to different numbers of threads from one execution to another.

220 C H A P T E R 9 :   S E A R C H I N G

C H A P T E R T E N

Graph Algorithms

A GRAPH IS A COMPUTATION OBJECT THAT IS USED TO MODEL RELATIONSHIPS AMONG things.
For example, constituent atoms within a molecule, components within an electrical circuit,
and nodes in a communication network are all things that you can represent and manipulate
as graphs. Trees are graphs with special properties, so you could represent a hierarchical chart
or family tree as a graph. There is a lot of terminology involved with graph theory. The next
few paragraphs give a quick overview of the basic terminology needed to study concurrent
algorithms to compute with graphs. If you’re already familiar with graph theory terms, feel
free to skip ahead a bit. Of course, if you’ve made it this far through the book, what’s another
page and a half between reader and author?

A graph is made up of two finite sets: a set of nodes (or vertices) and a set of edges. Each node
has a label to identify it and distinguish it from other nodes. Edges in a graph connect exactly
two nodes and are denoted by the labels of the pair of nodes that are related. If you have a
graph of three nodes—A, B, and C—the two edges connecting A with B and B with C would
be written as (A,B) and (B,C).

A graph is directed if all edge pairs are ordered. Directed edges represent a one-way relationship
from one node to another. If the node pairs are unordered, the graph is undirected. A directed
graph can be undirected if, for every edge (u,v), the graph contains the edge (v,u). Think of
a two-way street where traffic can travel between two intersections in either direction, but
only on the correct side of the street.

The most frequently used representation of a graph within a computer application is an
adjacency matrix. Given a graph of n nodes, the adjacency matrix is an n×n binary matrix that
represents the edges within the graph. Each row and each column of the matrix is assigned a
node from the graph. If the edge (u,v) is present in the graph, a 1 is entered in the element at
the intersection of the row representing u and the column representing v ; otherwise, a 0 is
stored to note that the edge is not within the graph. Figure 10-1 shows a representation of a
directed graph (the circles are nodes with the assigned label near the node; the arrows are
edges) and the corresponding adjacency matrix.

A B C D E
0 1 1 0 0
0 0 0 1 1
0 0 0 0 0
1 0 1 0 1
0

A
B
C
D
E 0 1 0 0

A
C

D

B E

FIGURE 10-1. Directed graph with corresponding adjacency matrix

There are cases when the relationship between nodes is associated with a real value, called the
weight. When each edge of a graph has an associated weight, the graph is known as a weighted

222 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

graph. For example, the weight of an edge might be the electrical resistance of the wire between
two electronic components, the strength of the bond between atoms, or the bandwidth
between communication nodes. While the interpretation of the value quantifying the
relationship between nodes depends on what the graph represents, it is customary to talk of
the weights in terms of length, as if the nodes were points along a system of roads represented
by the edges. When I discuss weighted graphs, I will use this convention. Figure 10-2 shows
an undirected weighted graph and the corresponding weight matrix representation.

A B C D E
0

2

5
4

7
-3

8
2

3

7 2 5
7 0 -3 8
2 0 4 3
5 -3 4 0 2

A
B
C
D
E 8 3 2 0

A
C

D

B E

FIGURE 10-2. Undirected weighted graph and associated weight matrix

Note the symmetry of the matrix in Figure 10-2 across the main diagonal. With an undirected
weighted graph, you only need to allocate memory to hold just under half of the weight matrix:
either the lower triangular section below or the upper triangular section above the main
diagonal.

How a weighted graph represents the case where there is no edge between nodes will depend
on the intended usage of the graph. Typical values used are 0, some negative number, the
maximum number that can be represented for the weight data type, or infinity. For the graph
shown in Figure 10-2, the use of the infinity value (∞) indicates that there is no direct edge
between the pair of nodes and 0 to indicate that no edge is required from a node to itself.

N O T E
If the graph has a maximum or fixed number of edges attached to each node, you can use a

structure containing a fixed number of pointers to represent a node. The pointers mimic the

edges of the graph by referencing (pointing to) those nodes that are connected to a given

node. Trees are often represented in this way during computations because trees are graphs

where (nonleaf) nodes likely have a set number of edges (e.g., binary trees) or some

maximum number of edges (e.g., 2-3-4 trees).

A path within a graph is a sequence of nodes in which successive nodes are connected by edges
in the graph, and a simple path has no repeated nodes. An example of a simple path from
Figure 10-1 would be ABDE, since the edges (A, B), (B, D), and (D, E) are in the graph. A

G r a p h A l g o r i t h m s 223

cycle is a path that begins and ends with the same node. The path ABDA is a cycle in the graph
given in both Figures 10-1 and 10-2. A tree has no cycles. For weighted graphs, the length of
a path is the sum of the weights assigned to the constituent edges. The length of the path
ABDE in Figure 10-2 is 7+(−3)+2 = 6.

N O T E
For graphs that have edges with negative weights, it seems to go against logic and common

sense to refer to an edge as having “length.” I mean, you couldn’t bring me a piece of pipe

with a length of negative three feet, right? The use of “length” is mostly tradition, anyway.

If you need to, think of weights as money to be paid (like tolls on the road); a negative weight

means you are owed money.

We call a graph connected if there is a path from any node to any other node in the graph.
The undirected graph in Figure 10-2 is connected. If a graph is not connected, it will be made
of connected components—that is, a set of connected subgraphs with no shared nodes between
any two subgraphs. A graph with a number of nodes and no edges is one extreme example of
a graph built from connected components.

Depth-First Search
If the computation needs to visit every node in the graph, depth-first search is an excellent
method for doing so. What kinds of problems can you solve by visiting every node in a graph?
Well, you can tell whether an undirected graph is connected, or you can identify and label the
connected components that make up the graph. You can also use a depth-first search to
determine whether there is a cycle in the graph.

Discrete optimization problems have a finite or infinite set of states that can satisfy the
constraints of the problem, and a cost function that yields a real number result for each possible
state. You can formulate searches for a minimal cost solution through a subset of the state-
space, since it is typically prohibitive to enumerate all possible states. For the computation,
states are related to one another by some transformation rule that controls the move from one
state to another. Depth-first searches can be used on the resulting portions of the state-space
graph, which is constructed as the search progresses.

For me, the best example of such optimization problems is finding the next best move in zero-
sum perfect-information games like tic-tac-toe, Awari, chess, or Go. The nodes of the state-
space graph are board (game) positions, and the edges of the graph are legal moves that are
possible to get from one position to another. Finding the next best move will start from a given
board position and branch to other positions via all legal moves; your opponent’s possible
moves branch out from all of these nodes, and so on. The resulting graph is better known as
a game tree.

224 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

N O T E
The 0/1 Knapsack Problem is another instance of a discrete optimization problem. Given N

things (each with a weight and value) to be placed in the knapsack (with a weight limit),

there are 2N possible solutions. The task is to find the set of items that will maximize the total

value while making sure the total weight of the items does not exceed the sack’s limit. Nodes

in the graph will be the knapsack with or without each item; edges will correspond to adding

an item that is absent or removing an item already in the knapsack. Starting with the empty

sack, a depth-first search will go through each item, in some order, and either add it or keep

it out of the knapsack. Once a possible solution has been reached, the search will return to

previous partial solutions in the tree and try different combinations, determining whether

each combination is a better solution or perhaps an impossible solution (too much weight

for the sack to hold). The search continues until the best solution is identified.

The idea behind depth-first search is to visit a node and then visit one adjacent node. From
this second node, the third node to visit is some node adjacent to the second node. Visualize a
family tree where each successive generation is ordered from oldest to youngest children.
Starting from the root couple, the next node selected is the eldest child of that couple. The
search proceeds by visiting nodes on a path that goes from the root through the eldest children,
initially ignoring brothers, sisters, cousins, aunts, uncles, nephews, and nieces, to the leftmost
leaf of the tree. This “plunging straight to the depths” of the graph is where the algorithm got
its name. When there is no other (previously unvisited) node adjacent to the just-visited node,
the depth-first search returns to the parent node that preceded the just-visited node and will
visit the next unvisited node from there. The numbers next to the nodes in Figure 10-3 show
the order in which the nodes would be visited in a depth-first search of the undirected graph
from Figure 10-2, starting from node A.

A B C D E
0 1 1 1 0
1 0 0 1 1
1 0 0 1 1
1 1 1 0 1
0

2

1
4

3

5

A
B
C
D
E 1 1 1 0

A C

D

B E

FIGURE 10-3. Depth-first search example

Since node A is the start of the search, it is the first to be visited. The next node to visit is an
unvisited node adjacent to A. Looking across the row of the adjacency matrix in Figure 10-3
corresponding to node A, the algorithm picks the first node that it encounters. Thus, it will
visit node B. Looking across the node B row, we see that node A is the first adjacent node.

D e p t h - F i r s t S e a r c h 225

However, since the algorithm has already visited that node, it will look for the next adjacent
node in line, which is node D. From node D, the algorithm will first try node A, then node B,
and then visit node C. From node C, node E is the only adjacent node that has not yet been
visited. Going through the node E row, the algorithm will find that all adjacent nodes have
been previously visited, so it returns to node C. All possible adjacent nodes of node C have
been accounted for, so the algorithm returns to node D. Picking up where the examination of
the node D row left off, node E will be identified as the next possible candidate. Since this node
has already been visited, there are no more nodes adjacent to node D and the algorithm will
go back to node B. Since the algorithm has already visited all nodes adjacent to both B and
A, the search finishes. If the graph were not connected, the algorithm would survey the nodes
of the graph to find one that had not been previously visited and then resume the depth-first
search from that node.

What does it mean to “visit” a node? What computation goes on during a visit? That will all
depend on the reason for the search through the graph. It could be something as simple as
labeling the nodes in a sequence for some external computation or checking for cycles by
looking to see that no adjacent node has been previously visited. If you are searching a game
tree, the node would first be checked to see if a winning (or losing) position had been reached,
and, if not, the algorithm would generate the next set of legal moves from the current node’s
position.

A Recursive Solution

Even if you haven’t studied depth-first search before this, I’m sure you’ve recognized that a
recursive solution is the simplest way to “return” to a previous node once all the other adjacent
nodes have been visited. Besides the adjacency matrix of the graph, the algorithm needs a
method to keep track of which nodes it has visited. For this, we’ll allocate an array with one
element per node to serve as an indicator of a node having been visited. The code fragment in
Example 10-1 gives some variable declarations needed within the recursive implementation
of a depth-first search function, DFSearch(), and the associated function to perform the visit
computations, visit(), on a selected node.

EXAMPLE 10-1. Serial implementation of depth-first search algorithm

int *visited; // notes when a node has been visited
int **adj; // adj[][] is adjacency matrix
int V; // number of nodes in graph

void visit(int k)
{
 int i;
 visited[k] = 1;
 /*
 Do something to VISIT node k
 */

226 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

 for (i = 0; i < V; i++)
 {
 if (adj[k][i])
 if (!visited[i]) visit(i);
 }
}

void DFSearch()
{
 int k;

 for (k = 0; k < V; k++) visited[k] = 0;
 for (k = 0; k < V; k++)
 if (!visited[k]) visit(k);
}

Nodes are associated with the rows and columns of the adjacency matrix adj. The values within
adj are either 1 or 0, such that if adj[i][j] is 1, then there exists an edge between the node
represented by row [i] and the node associated with column [j]; otherwise, the value is 0 to
indicate that such an edge is not part of the graph. (For the rest of this chapter, I’m going to
refer to nodes by their row or column index to avoid having to write “node associated with
row/column” too much.) The code in Example 10-1 also assumes that the global integer, V,
holds the number of nodes in the graph and, consequently, the number of rows and columns
of adj.

The DFSearch() function first resets the visited array to all 0 entries, since none of the nodes in
the graph have yet been visited. The for loop runs over all nodes in the graph. For any that
are not visited, the visit() function is called. This for loop will work for graphs that are a
collection of connected components. Once all the nodes of one component have been visited,
the return from visit() to the DFSearch() function continues through the for loop, and the next
unvisited node is chosen for the call to visit(). This will visit all the nodes in the associated
component.

The actual computation to be done in order to “visit” a node is left unspecified in the comment
of the visit() function. Before this computation is begun, the function marks the node as
having been visited by setting the element of the visited array corresponding to the node. A
scan through all the graph nodes is done. Any node that is adjacent to node k is tested for
having been previously visited. If the node has not been previously visited, visit() is called on
this adjacent, unvisited node.

Once a node has exhausted all the nodes in the graph that are adjacent to it, the visit() function
returns to the location from which it was called. If this return is to a prior call of visit(), the
for loop will resume the scan for adjacent nodes from the node that had prompted the just
returned call to visit(). Through the combination of the for loop in DFSearch(), the recursion,
and for loop in visit(), each node in the graph will be visited.

D e p t h - F i r s t S e a r c h 227

An Iterative Solution

We’ve seen from Quicksort (Chapter 8) that a recursive serial algorithm is not as easy to
transform to a concurrent equivalent as an iterative algorithm. We can add a stack to the code
and simulate the recursion by first pushing all nodes onto the stack within DFSearch(). Then, a
while loop, on condition that the stack is not empty, will first pop() a node off the stack. If this
node has not been previously visited, the visit computation is done, the node is marked as
being visited, and all nodes adjacent to the newly visited node are pushed onto the stack. This
modification is shown in Example 10-2, where the push(), pop(), and size() functions have
been defined as you would expect for some stack data structure implementation. Though it
really shouldn’t matter to the search results, I’ve reversed the order in which the loops iterate
their for loops to keep the same node order for visits as the recursive algorithm.

EXAMPLE 10-2. Iterative version of depth-first search algorithm

int *visited; // notes when a node has been visited
int **adj; // adj[][] is adjacency matrix
int V; // number of nodes in graph
stack S; // stack of nodes (indices)

void DFSearch()
{
 int i, k;

 for (k = 0; k < V; k++) visited[k] = 0;
 for (k = V-1; k >= 0; k--) {
 push(S, k);
 }
 while (size(S) > 0) {
 k = pop(S);
 if (!visited[k]) {
 visited[k] = 1;
 /*
 Do something to VISIT node k
 */
 for (i = V-1; i >= 0; i--)
 if (adj[k][i]) push(S, i);
 }
 } // end while
}

The pushing of nodes onto stack S in the body of the while loop could also test whether or not
the adjacent node has been visited prior to being pushed on the stack. As the search progressed,
there would be fewer nodes placed on the stack. However, we still need to test whether or not
a popped node remains unvisited at the top of the while loop body. There is always a chance
that a node will be pushed onto the stack, popped off, and visited before a previously pushed
instance is popped off and tested. For example, node C in Figure 10-3 will be pushed initially

228 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

onto the stack when it is adjacent to node A, and then again when it is adjacent to node D.
This last push() would lead to the first pop() that brings node C to be visited.

Not the Concurrent Solution, Yet

With Quicksort as an example, you should be able to transform the code in Example 10-2 into
a concurrent version of depth-first search. The implementation will use a thread pool on a task
decomposition design where the independent tasks are the visit computation of previously
unvisited nodes. Some of the salient implementation points to keep in mind when designing
such a solution are: find or implement a thread-safe stack, use a semaphore object to control
and keep a count of the number of items in the stack, protect access to the shared visited array,
and count the nodes as they are visited until the count reaches V to determine when the graph
search is done. When threads find that the search has completed, the stack may still contain
visited nodes; be sure to empty the stack to avoid a memory leak.

Hold on a minute—if this is just like the Quicksort code back in Example 8-17, why did I even
include this algorithm in the book, let alone devote more pages to something that has
essentially been done before? Depth-first search and Quicksort do have a similar concurrent
algorithmic structure: tasks go into a shared structure where threads pull out and put in tasks
before terminating (when all the work is done). However, depth-first search uses a visited
array, which has no counterpart in the Quicksort algorithm. So, before we jump into the
concurrent version of depth-first search, I want to address the details of handling this array,
specifically issues concerning lock usage, that will come up during that implementation.

How many locks do we need?

In the concurrent implementation of depth-first search, the visited array needs to be shared,
since all threads will need access to check on a node’s visit history and update that history
when the node is actually used. A single lock object on the entire array would be the easiest
solution to regulate correct access to ensure that the same node is not visited by more than
one thread. The biggest problem with this is the possibility of threads piling up awaiting access
to the critical regions of reading or updating one element from the visited array. This will
generate a very big overall performance hit and should be avoided if possible.

If we realize that the visited array will be updated once per node, but read by many threads
during the course of the search, we might think about using readers/writer locks. This looks
like the perfect situation for using such a synchronization object, since we can expect that the
majority of accesses to visited elements will be for reading. Rather than having to queue up
at a single monolithic lock on the entire array, all the reading threads can be given concurrent
access. Surely, we should expect less of a performance hit than with a single lock.

Unfortunately, since the size of the critical region of code is so small, there will be no
performance advantage. In fact, as Bryan Cantrill and Jeff Bonwick remind us in “Real-World
Concurrency” (Communications of the ACM, 2008), since the state of the lock needs to be

D e p t h - F i r s t S e a r c h 229

checked and updated atomically, the overhead associated with the readers/writer lock is going
to be the same as using a single, ordinary lock. To be most effective, readers/writer locks need
large critical regions to have the chance for multiple readers to be executing at the same time,
which hides the latency of the lock overhead. Looking back to Example 10-2, there are, at
most, only two lines of code (the if-test and the setting of visited[k]) accessing the visited
array.

If you’ve got to pay the overhead one way or the other, you’ll achieve the best performance
by reducing or avoiding contention on the locking object. So, swinging from one extreme to
the other, rather than having a single lock guard the entire array, we could have a lock for
each individual array element. Access to an element of visited still has the same locking
overhead, but, on average, there will be far fewer instances of multiple threads needing
concurrent access to the same element in the array than there would be instances of multiple
threads needing concurrent access to any element of the array protected by a single lock.

The drawback to the one element/one lock scheme (and you just knew that there had to be
one, didn’t you?) is that for a graph with V nodes, V lock objects will need to be allocated with
the visited array. This is a tradeoff of space for performance. As the search state-space becomes
larger and larger, this could quickly become a drain on platform resources. We need something
between the two extremes to balance the contention and memory space issues.

My solution for such cases is to use modulo locks. If the multiple data items that require
mutually exclusive access are indexed, you can allocate a fixed number of locks, and the result
of the calculation of the item index modulo the number of locks is used to index the lock
employed to regulate access to the given item. For example, if we allocate two lock objects,
one of these will protect access to the even-indexed items and the other will control access to
the odd-indexed items.

With a fixed number of lock objects, there is no problem with memory resources, even when
the size of the data scales. In the case of two objects, we would expect that the contention on
each lock would be cut in about half from what it would be with a single all-encompassing
lock, which should yield some performance benefit. What is the optimal number of locks to
use? As a rule of thumb, I think it’s good to use a number of locks equal to the number of
threads. If two locks cut the contention time in half, I figure that a number of locks equal to
the number of threads should avoid all contention, with each thread never needing the same
lock held by another thread. That won’t happen, of course, but it is a good goal. Twice the
number of threads should still be relatively small and will help spread out any anticipated
contention even better.

The standard wisdom with critical regions is to keep them as small as possible. Remove any
extraneous code that doesn’t need to be protected in order to reduce the amount of time a
thread spends in the critical region. This will lower the amount of time that threads spend
waiting to gain access to the critical region code protected by a contended lock object. With
the extra computation needed to perform the modulus calculation or the overhead of readers/

230 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

writer locks, it seems that a larger critical region will not be as detrimental, since both of these
two synchronization options should greatly reduce the contention you would expect from use
of a single lock object.

Locking a conditional expression evaluation

Another part of the code in Example 10-2 that concerns the use of locks protects the read access
of visited[k] in the evaluation of the if conditional expression. You can’t put a lock/unlock
sequence in the conditional expression itself. However, you can read the value of the protected
variable into a local variable and use the local variable’s value within the conditional expression
evaluation. Example 10-3 shows code that does just that. The Pthreads pthread_mutex_t object,
Vmutex[j], protects the critical region on the read access of visited[k]. You must also use this
object to protect the critical region that updates the visited[k] element, which you should
realize automatically by now. The lVisited variable holds the local copy of the visited[k] value,
and the local integer j holds the lock object index computed from the modulus operation.

EXAMPLE 10-3. Protecting access to variables within a conditional expression

j = k % NUM_LOCKS;
pthread_mutex_lock(&Vmutex[j]);
 lVisited = visited[k];
pthread_mutex_unlock (&Vmutex[j]);
if (!lVisited) {
 pthread_mutex_lock (&Vmutex[j]);
 visited[k] = 1;
 pthread_mutex_unlock (&Vmutex[j]);
 /*
 Body of if statement
 */
}

Now, let me throw another curve ball at you. The value of lVisited is only good as long as the
execution is within the critical region. Upon doing a quick interleaving analysis, we find that
we can have two threads, T0 and T1, approach the code in Example 10-3 with the same local
values of k. T0 reads visited[k], sets the local value of lVisited, exits the first critical region,
and is swapped out of the core, where T1 resumes execution. T1 enters the initial critical region
and finds that the k node has not been visited and sets the local value of lVisited. In fact, if
there are multiple cores, T1 can enter the initial critical region while T0 is testing its local value
of lVisited. In either event, both T0 and T1 will execute the code to visit node k.

By using the same lock object around the read and around the update of visited[k], the code
in Example 10-3 will protect the value of visited[k] from being changed while a thread is
attempting to read it. However, if the values of protected variables can be changed before a
copy of that value can be used, as shown earlier, we’ll need to take steps to ensure that the
retrieved value is utilized before the source of the value can be modified. Thus, it looks like we
need to not only have both the read and write access of elements from visited protected by
the same lock object, but also to have them in the same critical region.

D e p t h - F i r s t S e a r c h 231

With this in mind, Example 10-4 shows how we can modify the code from Example 10-3 to
protect both the read and write access to visited[k] with a modulo lock and still have the results
of the read control when a thread will execute the visit code in the body of the if statement.

EXAMPLE 10-4. Protecting both read and write of variable used in conditional expression

j = k % NUM_LOCKS;
pthread_mutex_lock(&Vmutex[j]);
 if (!visited[k]) {
 iWillVisit = 1;
 visited[k] = 1;
 }
pthread_mutex_unlock(&Vmutex[j]);
if (iWillVisit) {
 /*
 Body of if statement
 */
 iWillVisit = 0;
}

The code in Example 10-4 has only the one critical region and uses the local variable
iWillVisit (initialized to 0, or FALSE) to preserve the results of the conditional expression
evaluation. This is like buying a ticket for a seat at a concert. If there is an empty seat, you can
purchase that seat. Once you have the ticket in your hand, you are the only one who can sit
in that seat.

Also, within the critical region, if node k has not been previously visited, the visited[k] element
is set to ensure that the thread setting this value is the only thread that will execute the visit
computation for this node of the graph.

Now for the Concurrent Solution

Up to this point, we’ve only dealt with the locking requirements to protect access to the
visited array. To complete the concurrent implementation of depth-first search, we will also
need to find or implement a thread-safe stack, use a semaphore object to control access and
keep a count of the number of items in the stack, and count the nodes as they are visited until
the count reaches V to determine when the graph search is done. All of this should go into the
section of code labeled Body of if statement in Example 10-4.

We can use the model of Quicksort to deal with the stack data structure and the associated
semaphore. In addition, we’ll need a critical region to protect the update of the global count,
which will be incremented whenever a thread is to execute the code to visit a node. Since this
is only incremented when a node finds an unvisited node, you might think we can protect the
increment in the same critical region as the conditional expression evaluation. If we use a single
lock to protect access to the entire visited array, this will work; if we use a modulo lock scheme,
though, there can be cases where two threads with different modulo results will be granted
concurrent access to the one counter. If we use a Windows Threads implementation, we can

232 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

take advantage of the interlocked intrinsics to increment the counter, even when using modulo
locks to protect the visited array.

If we are going to have a Windows Threads implementation, there is an alternative to the use
of an explicit lock object to implement the critical region. Since we have to read the value of
an element from the visited array and, based on that value, possibly update the value of that
element, all in a mutually exclusive way, we could use InterlockedCompareExchange(). This
intrinsic takes three parameters, d, e, and c. When called, this function stores the current value
of d in a temp location and compares d to c. If the result of the comparison finds that the two
values are equal, the intrinsic stores the value of e into d. Regardless of the comparison test, it
returns the original value of d from the temp location. All of this is done atomically.

To use InterlockedCompareExchange() to replace the critical region algorithm from
Example 10-4, we will set d to reference visited[k]. e will be 1 and c will be 0. If visited[k] is
0 (node has not been visited), comparing this to c will result in the equality test being TRUE,
and the value in e will be stored in visited[k]. This atomically sets the status of the node to be
visited, and the return of 0 from the originally stored value signifies that the node was
previously unvisited. On the flip side, if visited[k] is 1, the comparison to c will not be equal,
there will be no change made to the value stored in this array element, and the return of 1
signifies that the node has already been visited by a thread.

The code in Example 10-5 brings together all the ideas that we’ve examined over the previous
few pages into a concurrent version of depth-first search using Windows Threads for the
implementation. This includes the threaded function pDFSearch() and some global declarations
that are different from earlier serial versions.

EXAMPLE 10-5. Concurrent implementation of depth-first search using Windows Threads

long *visited;
long gCount = 0;
stack S;

unsigned __stdcall pDFSearch(void *pArg)
{
 int k, i, iWillVisit=0;

 while(1) {
 WaitForSingleObject(hSem, INFINITE); // Semaphore count of stack size
 if (gCount == V) break;
 k = pop(S);
 if (!InterlockedCompareExchange(&visited[k], 1L, 0L)) {
 iWillVisit = 1;
 InterlockedIncrement(&gCount);
 }
 if (iWillVisit) {
 /*
 Do something to VISIT node k
 */
 for (i = V-1; i >= 0; i--)
 { int semCount=0;

D e p t h - F i r s t S e a r c h 233

 if (adj[k][i]) {
 push(S, i);
 semCount++;
 }
 if (semCount) ReleaseSemaphore(hSem, semCount, NULL);
 }
 iWillVisit = 0;
 if (gCount == V) SetEvent(tSignal);
 }
 }
 return 0;
}

The declarations shown in Example 10-5 include the global counter (gCount), the thread-safe
stack (S) to hold integer indexes of graph nodes, and the data type change for the visited array
to long in order to use elements with InterlockedCompareExchange(). We’ve declared gCount as
long in order to use InterlockedIncrement() as an atomic update whenever a node is found that
can be visited.

Following the template of the QuickSort() code from Example 8-17, we encase the whole
computation in an infinite while loop. Each thread will use the semaphore (hSem) to determine
whether there are nodes on the stack. (I’ll show how hSem gets initialized in Example 10-6.) If
there are items on the stack (the semaphore count is greater than 0), the
WaitForSingleObject() function decrements the count. Before going on, the code checks the
search termination criteria. Once all the nodes in the graph have been visited (gCount == V),
there’s no reason for threads to continue, so the threads will break out of the while loop and
terminate.

If the search hasn’t gotten to all nodes, the thread pops a node index from the stack into the
local integer k. As described previously, InterlockedCompareExchange() atomically tests the state
of visited[k] and updates the value to indicate that node k will be visited. If the update is made,
the thread sets iWillVisit, which acts like a ticket into the code that actually performs the visit
computation, and atomically increments the global counter, gCount.

If the iWillVisit flag is set, the thread does the visit computation on node k. Once this is done,
the row k of the adjacency matrix (adj) is searched. Each adjacent node is pushed onto the
stack with a local counter keeping track of how many new nodes are added to the stack. After
all the nodes have been placed on the stack, the semaphore value is updated. By using the local
counter, we need to call ReleaseSemaphore() only once, and only if there were adjacent nodes
found. Finally, the iWillVisit flag is reset in preparation for the next node to be taken from
the stack.

Before going back to the stack, the thread examines the value of gCount. If all nodes have been
visited, a signal is sent to an external thread (likely the thread that spawned the threads for
the search) to indicate that the search is done. While we could place a break here, we still need
the test and break just after the WaitForSingleObject() call on the semaphore for those threads
that don’t handle the last node to be visited.

234 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

A little interleaving analysis

In the concurrent Quicksort algorithm, once the queue becomes empty upon completion of
the sorting, threads can end up waiting for a semaphore that won’t be incremented, since all
the sorting threads are waiting on the semaphore. Before getting hung up on the semaphore,
a signal is sent from one of the sorting threads to indicate that the sorting has been done; the
receiver of that signal calls the ReleaseSemaphore() function with a count equal to the number
of sorting threads. This allows the sorting threads to return from the wait on the semaphore
and evaluate the termination condition test that will cause them to finish. The code in
Example 10-5 is written with the similar structure, but is it really necessary?

Will the stack for depth-first search become empty at the same time the search has completed?
At first glance you might say, “No.” As nodes are visited, all adjacent nodes are pushed onto
the stack. Once the last unvisited node is popped from the stack and visited, the search is
complete and the stack will still contain many nodes that have already been visited (the last
node visited adds any adjacent nodes are to the stack). Why should we care? If the stack will
always have nodes, even after the search has finished, threads will pass through the wait on
the semaphore in order to pop off a visited node, but will terminate because gCount has reached
the number of nodes in the graph. There is no need for a signal or an external thread to load
up the semaphore to free trapped threads, right?

While this might be how things play out 99 44/100% of the time, we can still create an
interleaving of threaded executions where the last node to be visited is popped off the stack
and the thread responsible is not allowed to execute until all other stack entries have been
popped, found to be visited, and the rest of the threads are waiting on the semaphore before
the last node is processed. Plus, even with new nodes being pushed onto the stack, we can
always have an instance where there are fewer nodes than threads.

In contrast, if the last node is a connected component in and of itself (just the node, no edges),
all processing of the rest of the graph will be done and this last node will be popped off the
stack at the very end. Again, the rest of the threads will be waiting on the semaphore while
the last node is visited. We had both of these possible situations with Quicksort. So, it looks
like we do need the signal and semaphore loading by an external source.

Spawning the depth-first search threads

Example 10-6 shows a code fragment for creating the search threads and initializing the data
structures.

EXAMPLE 10-6. Code fragment to call pDFSearch() function

for (i = V-1; i >= 0; i--) push(S, i); // load up initial stack
hSem = CreateSemaphore(NULL, V, V*V, NULL); // Initialize semaphore

for (i = 0; i < NUM_THREADS; i++)
 hThreads[i] = (HANDLE) _beginthreadex(NULL, 0, pDFSearch, NULL, 0, NULL);

D e p t h - F i r s t S e a r c h 235

WaitForSingleObject(tSignal, INFINITE); // Wait for signal
ReleaseSemaphore(hSem, NUM_THREADS, NULL);

The first line pushes all the nodes onto the stack S in order to cover cases when the graph is
made up of connected components. The count of the semaphore object, hSem, is initialized as
V, the number of nodes on the stack, and the maximum count value is set at V2. This corresponds
to a fully connected graph with V nodes, which has the largest number of edges for the given
number of nodes.

The _beginthreadex() function spawns the threads, and the returned HANDLE for each thread is
stored in the hThreads array. After creating the threads, the spawning thread waits on the
Windows event that will signal completion of the search. In case there are threads stalled
waiting on an empty stack, ReleaseSemaphore() is called to release those threads so they can
determine that the search has completed.

If you look back at Example 10-5, you might wonder why we set the tSignal event after the
node had been processed, and why extra, ineffectual nodes were added to the stack. Why not
put the test for completion and sending of the signal right after the InterlockedIncrement() call
that results in gCount achieving the target value? This does seem like a more logical place, but
it could lead to a problem in the spawning thread’s use of the search results. If the signal is sent
before the last node has actually been processed, the spawning thread (Example 10-6) can
wake up, set the semaphore’s count to ensure that the search nodes aren’t ensnared by an
empty stack, and then proceed to use the (incomplete) results of the search. To guarantee that
all node processing has finished, the spawning thread needs another synchronization point
after setting the semaphore value. By not sending the signal until after the last node is finished
with the required visit processing, the spawning thread knows that all search processing is
finished when the tSignal event is set and that it is safe to proceed.

Design Factor Scorecard

How efficient, simple, portable, and scalable is the concurrent version of the depth-first search
code described earlier? Let’s review the algorithm with respect to each of these categories.

Efficiency

Use of a modulo lock scheme should boost efficiency of threaded execution by spreading out
the contention of required lock objects over multiple objects, rather than heaping it all onto a
single lock. Using a finite number of locks, as opposed to a single lock for each instance of a
data set, keeps the memory resource usage of your threaded code manageable and more
scalable.

The maximum size of the stack needed will be V2. A much tighter limit would be the number
of 1 entries in the adjacency matrix. Rather than using a dynamically linked list
implementation of a stack, it may be feasible to use a static array implementation, depending

236 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

on how much space individual stack items require. If you’re using a third-party thread-safe
stack implementation, you’re pretty much stuck with what you get.

Simplicity

The concurrent version, for the most part, is a direct translation of the iterative version of
depth-first search. The code that we added to determine when the search has completed uses
the same ideas and objects as the concurrent QuickSort(). Understanding that implementation
will make it easier to understand this one.

Perhaps the most obtuse portion of the depth-first search code from Example 10-5 is the use
of InterlockedCompareExchange() to regulate the testing and marking of elements from the
visited array. In Windows System Programming, Third Edition (Addison-Wesley Professional,
2004), Johnson Hart demonstrates the use of this intrinsic as the implementation of a spin-
lock. Our use of this intrinsic mimics Hart’s example, but we’ve only used the locking half.
There is no need to “unlock” a node once it has been visited. While the use of the intrinsic and
how it functions may cause another programmer to pause when reading the code, this code is
much simpler (and offers better protection) than the equivalent code from Example 10-4.

Portability

Because of the use of the InterlockedCompareExchange() intrinsic, you can implement the code
given here for depth-first search only on Windows platforms that support this intrinsic. We
will need a variation on the more complex code of Example 10-4 to implement the algorithm
with a different explicit threading library. Either that or include and execute assembly language
code for a compare-and-swap (CAS) operation, if such an instruction is supported on the
processor you are running on.

Use of Intel TBB or OpenMP for this algorithm would require the use of the explicit task
interfaces from either. Rather than pushing a node onto the stack, a new task can be spawned
for that node. While this would allow us to implement the algorithm without needing to find
or create a thread-safe stack data structure, there are two other concerns. The first is that the
task scheduling mechanism will be directly responsible for the order in which nodes are visited.
This may not be a stack-based ordering, so the depth-first search may not plumb the depths of
the graph as we anticipate (not to mention that a multithreaded execution with a stack data
structure will likely not visit nodes in the same order as the serial code). The second concern
is terminating the TBB or OpenMP threads when the search has completed; there may be more
tasks (on visited nodes) “in the stack” to be considered. We could put in code to recognize the
termination of the search and then simply allow the threads to finish the examination of tasks
already created, quickly discard the visited nodes, and not create any new tasks.

Scalability

The amount of computation that is needed to visit a node will affect the scalability of the depth-
first search code. The more computation there is, the coarser the granularity will be per thread.

D e p t h - F i r s t S e a r c h 237

This will help hide the overhead of having mutually exclusive access to the visited array and
the synchronization needed to push and pop items from the thread-safe stack. Curtailing the
processing of the search once all nodes have been visited will improve overall performance, too.

Modulo locks, if needed, can enhance the scalability of an algorithm by reducing the contention
on a single lock object. The number of locks will depend on the time needed to perform the
modulo computation and the probability of contention on a single lock in the face of multiple
locks. A good rule of thumb is to use at least the same number of locks as threads, in the hopes
that the worst case will be that each thread uses a different lock whenever multiple threads
need a lock. Of course, you should apply the practice of having one lock per object protected
(or multiple locks protecting access to elements from the same array) to ensure proper
protection of diverse items (Simple Rule 7).

Breadth-First Search

Like depth-first search, breadth-first search visits all nodes within a graph. The difference is
that from a given node in the graph (after that node has been visited), the algorithm next visits
all nodes adjacent to the node. So, after visiting a node in the graph, all nodes adjacent to that
node will be visited, followed by all nodes adjacent to those, and so on. If the graph is a tree,
the order in which nodes are searched will be by level in the tree. That is, after first visiting the
root (level 0), all children of the root (level 1) will be visited. This will be followed by visits to
all the grandchildren of the root (level 2) followed by the level 3 nodes, and so on.

One “fun” problem that we can represent as a search graph is finding the sequence of moves
to restore a Rubik’s Cube to the original arrangement of single colored faces. In my opinion,
this problem is better solved using breadth-first search. The lowest limit at the time of this
writing is no more than 26 face rotations required to solve any given cube, which was proven
by Daniel Kunkle and Gene Cooperman in their paper, “Twenty-Six Moves Suffice for Rubik’s
Cube” (Proceedings of the 2007 International Symposium on Symbolic and Algebraic
Computation, 2007). Many situations will require fewer than 26 moves and, depending on the
order of moves generated, breadth-first search could find these quicker than a depth-first
search.

From a given cube configuration, there are 12 possible single moves (six faces, each with two
possible rotation directions) to create another cube configuration. If one rotation does not yield
the solution, we could then try any of 12 possible single moves from each of those original 12
moves. Any cycles in the search graph will denote a return to some previously created
configuration and can be ignored. Eventually, after generating and searching through rotations
of cube faces, a solution will be found with 26 moves or less.

238 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

CAN WE SOLVE ALL RUBIK’S CUBE CONFIGURATIONS BY
BRUTE FORCE?

Before you go off and write a cube-solving application to find the minimum number of moves for a
given configuration, let’s look over some of the numbers. The search tree will have a depth of no
more than 26 levels, 12 branches (moves) from the root, and 11 branches from each internal node
(to avoid the obvious cycle generated by undoing the previous move). This gives us a worst-case
grand total of 12×1125 ≈ 1.3×1027 possible cube positions to examine in order to determine whether
the solution has been reached. Let’s assume that, on average, only half of these nodes will need to
be searched, and your multicore processor platform can generate and evaluate 200 million positions
per second, which is the computation rate that the 1997 version of Deep Blue achieved with 30
processors equipped with special chess hardware. See Behind Deep Blue: Building the Computer
that Defeated the World Chess Champion (Princeton University Press, 2002) by Feng-Hsiung Hsu for
details. If you have all of that, you would be able to find the correct sequence for one cube
configuration in about 3.25×1018 seconds, or just less than 103 billion years (insert exasperated sigh
here). You might want to wait for the billion-core processors to ship before attempting this.

It’s all in the queue

To tackle a more tractable problem than finding the minimal solution to a Rubik’s Cube
configuration, the implementation of a concurrent breadth-first search algorithm will be
almost exactly the same as the concurrent depth-first search code. The only difference is that
a thread-safe queue is used instead of a stack to order the nodes to be searched. To initialize
the queue, we should insert only one element. For a graph of connected components, the
algorithm will need to load up another unvisited node when the queue is empty and there are
still unvisited nodes. This change from loading up all nodes for connected components is due
to the use of a FIFO queue. By placing all nodes in the queue initially, none of the adjacent
nodes found would be visited in the proper order. The initialization nodes would all have been
seen before those adjacent nodes get to the head of the queue.

Static Graphs Versus Dynamic Graphs

The depth-first and breadth-first search algorithms presented here both assume that the graph
is defined before the search functions are called. That is, the graph is static and won’t change
during the execution of a search. More dynamic instances like game trees will generate the
next set of adjacent nodes during the visit computation. There are game tree search algorithms
specifically designed to search moves in these specialized cases. While I’ve never programmed
a two-player, zero-sum game before, the structure of the concurrent implementations given
previously appear to be adaptable for such algorithms or on searches of other dynamically

D e p t h - F i r s t S e a r c h 239

generated graphs. The stopping criteria will change, depending upon the actual search
algorithm and goals and limits of the search.

All-Pairs Shortest Path
Before there were online mapping applications, I would consult a paper map to find how far
it was to travel from Albuquerque to Boston (2,232 miles according to Google Maps). A map
or atlas of the country might have a lower triangular matrix where I could find the
precomputed distance between a set of cities. Looking at the intersection of rows/columns for
Albuquerque and Boston, I would find my answer. Since there isn’t one single road that
connects these two cities, how did the mapmakers know the shortest distance between these
two places?

If you think of a map as an instance of a graph, the cities would be nodes and the roads between
cities would be the edges. The length of the road is the weight of an edge. The all-pairs shortest
path algorithm can compute the minimum length path (shortest distance) between all pairs of
nodes within the graph. Thus, besides computing the shortest distance needed to drive from
Albuquerque to Boston, you can also find the minimum driving distance between Chicago and
Denver, between El Paso and Fargo, or between Georgetown and Houston.

More formally, the all-pairs shortest path algorithm takes a graph of n nodes and n×n weight
matrix, W. The result is an n×n matrix, D (for distance), where the D[i][j] entry holds the
minimum weight of the path from node i to node j. Entries in the W matrix can be 0, positive,
or negative (as long as there is no negative length cycle). This condition will assure that only
simple paths are found. The weighted graph in Figure 10-2 has a negative length edge, but any
cycle that includes this edge will still have a positive total weight. The “special” entries in
Figure 10-2 correspond to the typical entries for a weight matrix to be used for this algorithm,
i.e., the 0 entry denotes that it takes no time or distance to travel from a node to itself, and the
infinity value (∞) indicates there is no direct edge between the nodes.

Floyd’s Algorithm provides a simple solution to this problem. The key point to the algorithm
is to find the shortest path between node i and node j that includes (or excludes) node k on
the path. Each possible node k in the graph is tried in turn to find these shortest paths. The
algorithm computes a series of successive Dk matrixes, one for each individual k, with the
previous Dk-1 matrix used in the computation. In mathematical notation, for all node pairs i
and j, we have:

Dk[i][j] = min(Dk-1[i][j], Dk-1 [i][k] + Dk-1[k][j])

After k iterations, the Dk matrix will hold the lengths of the shortest paths that use the first k
nodes as intermediate nodes in the path. Once the algorithm has iterated over all n nodes in
the graph, the Dn matrix will contain the shortest path lengths between all pairs of nodes with
any other node(s) as intermediate nodes. This is the result that we are looking for.

240 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

From the description just given, we can see that there will be a nested loop pair to compute
the minimum path between each i,j pair. This computation will be the body of the loop that
iterates over all the choices for k. If the initial D0 is simply the original weight matrix, W, we
have the serial code in Example 10-7.

EXAMPLE 10-7. Serial implementation of Floyd’s Algorithm

void Floyds(float **D, int N)
{
 int i, j, k;

 for (k = 0; k < N; k++) {
 for (i = 0; i < N; i++) {
 for (j = 0; j < N ; j++)
 D[i][j] = min(D[i][j], D[i][k] + D[k][j]);
 }
 }
}

This code uses a float array for both the weight and distance matrixes. The code not shown in
Example 10-7 to initialize the weight matrix for computation uses the constant FLT_MAX from
the float.h include file to play the role of infinity.

To convert the code in Example 10-7 to a concurrent version, the outer loop can be considered
akin to a time series iteration. The algorithm must finish all updates to the D matrix entries for
each k before going to the computation using k+1. The outer loop must be run in serial, and
the two inner loops are the only possible candidates to run concurrently. The actual concurrent
implementation can easily be done in OpenMP or Intel TBB. Example 10-8 shows a TBB
solution. I’ve simply moved the nested loops into the tryK class and called the parallel_for
algorithm using the intrinsic blocked_range2d range class to be able to divide up the iterations
of these two loops.

EXAMPLE 10-8. Concurrent implementation of Floyd’s Algorithm using Intel TBB

class tryK {
 const int k;
 float **D;

public:
 void operator() (const blocked_range2d<int,int>& r) const {
 for (int i = r.rows().begin(); i < r.rows().end(); i++) {
 for (int j = r.cols().begin(); j < r.cols().end(); j++)
 D[i][j] = min(D[i][j], D[i][k]+D[k][j]);
 }
 }

 tryK (const int k_, float **D_) : k(k_), D(D_) {}

 tryK (const int k_, float **D_, split) : k(k_), D(D_) {}
};

A l l - P a i r s S h o r t e s t P a t h 241

void cFloyds(float **D)
{
 int k;

 for (k = 0; k < V; k++)
 parallel_for(blocked_range2d<int, int> (0, V, rGrainSize, 0, V, cGrainSize), tryK(k, D));
}

This code assumes that two constants are defined, rGrainSize and cGrainSize, to set the
minimum number of rows and columns into which the TBB scheduler will divide the loops.
You will need to set these values, which you can find through trial and error testing to see how
small the array blocks can get before performance suffers.

One thing I didn’t point out in Example 10-7 is that the entire array is computed. I began this
section talking about a lower triangular matrix needed to find the distance on a map between
two cities. Why do we need to compute over the whole D array? On a map, roads go both ways,
at least between cities. If we have a directed graph, there can be a path from node P to node
Q, but there may be no path from Q to P or that path may run over edges that have a different
total weight (maybe it’s uphill in one direction). To compute the shortest path for all pairs of
nodes in the graph, we need to work with the whole array.

What About the Data Race on the kth Row?

I don’t think I need to explain the details of the code in Example 10-8. If you understand the
serial algorithm and the code and understand the TBB parallel_for algorithm, it’s all smooth
sailing. However, before taking my word on the correctness of the concurrent implementation,
can you prove that there are no adverse data races?

If you examine the serial algorithm, each iteration of the k loop accesses all entries of the D
array to check for possible updates. The structure of the loops does this one row at a time,
reading values from a fixed row (k). Without loss of generality, we can assume that entire row
updates are assigned to individual threads. Are there interleavings of two threads, T0 and T1,
where T0 is assigned some row i != k and T1 is assigned to update row k, such that T1 could
update D[k][j] both before (one interleaving) and after (another interleaving) T0 updates D[i]
[j]? Yes, we can do that quite easily. But does it matter?

This last question is really the crux of the matter. Let’s rewrite the body of the inner loop by
substituting k for i to explicitly illustrate the computation that T1 would execute. This
substitution gives us:

D[k][j] = min(D[k][j], D[k][k]+D[k][j])

From the original weight matrix, we know that D[k][k] will be 0. The only way to get a smaller
value in a main diagonal element of the distance matrix would be to have a negative cycle
from the node to itself. However, it was stipulated that the graph could have no negative cycles.
The result of the operation just shown will be to find the minimum value between D[k][j] and
itself, which will result in no updates to any element of the distance matrix within row k. Thus,

242 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

regardless of how TBB divides up the distance matrix for updates, there will be no data race
accessing elements from (the fixed) row k.

As I’ve mentioned before, sometimes interleaving analysis is not quite enough. Just because
there appears to be a data race, you have to show that there will be actual adverse consequences
from the problematic interleaving schedule.

Design Factor Scorecard

How efficient, simple, portable, and scalable is the concurrent version of the code for Floyd’s
Algorithm described earlier? Let’s review the algorithm with respect to each of these categories.

Efficiency

Overall, the efficiency of the concurrent code will be similar to that of the serial version. By
using the blocked_range2d class, we yield some of the efficiency decisions to the TBB task
scheduler at runtime. If we had used the one-dimensional blocked_range class on the i loop,
each iteration of the concurrent loop would access the kth row in order to update the jth row.
As given in Example 10-8, the TBB scheduler would have the option of assigning work in this
way, or it might carve out blocks of the distance matrix to be updated, which would be the
most flexible solution.

Simplicity

Once you know that the iterations of the i loop from Floyd’s Algorithm are independent, the
concurrent solution practically writes itself. If we had used a single OpenMP pragma on the
code in Example 10-7, the concurrent solution might even be a tad simpler than the TBB
version.

Portability

It would be easy enough to use an explicit threading library to divide up the i loop iterations
and assign them to threads. Implementation of a message-passing version of Floyd’s Algorithm
would be more difficult, since any distribution of the distance matrix D by either rows or
columns would require passing data for all parts of D not held locally. There are better
algorithms for this problem on distributed-memory platforms. A matrix multiplication-based
algorithm or applying Dijkstra’s single-source shortest path algorithm to each node in parallel
would be better suited to distributed memory. These alternatives are briefly outlined in the
next section.

Scalability

As the number of available threads (cores) increases, the number of rows or blocks of D to be
updated per thread will be reduced. There will be some point at which the amount of
computation (a number of additions and calls to the min() function) will be too small to hide

A l l - P a i r s S h o r t e s t P a t h 243

the overhead of a threaded execution. This is all in direct relation to the number of nodes in
the graph. More nodes in a graph yield more work and allow more threads to divide up that
work.

Alternatives to Floyd’s Algorithm

You may have noticed that the triple-nested loop structure of Floyd’s Algorithm is very close
to the linear algebra operation of matrix-matrix multiplication. Rather than using
multiplication and addition, Floyd’s Algorithm uses addition and minimum. In Introduction
to Algorithms, Second Edition (MIT Press, 2001), Thomas Cormen et al. give a straightforward
transformation to show the relationship between the all-pairs shortest path algorithm with the
matrix-matrix multiplication algorithm using the appropriate operations. Rather than
reproducing that transformation here, I will just mention the key points that demonstrate why
this formulation of the algorithm works.

Let Dk be the distance matrix such that individual elements, dk[i][j], are the lengths of the
shortest paths between node i and node j with k – 1 or fewer intermediate nodes. We can
compute each term by finding the smallest sum, dk/2[i][j] + dk/2[i][j], for all possible nodes.
Going back to the map example as an illustration of this approach, to find the shortest path
between Albuquerque and Boston with k−1 intermediate cities, by computing the sum of the
shortest path of k/2−1 or fewer nodes from Albuquerque to CityX and the shortest path of k/
2−1 or fewer nodes from CityX to Boston. CityX is all other possible cities (nodes) on the map
(e.g., Cincinnati, Charlotte, Calgary, Chattanooga, etc.).

The initial D1 is the weight matrix, W. To compute D2, we simply perform matrix multiplication
(using + and min operations) of D1 with itself. Multiplying D2 with itself will give us D4, and
we continue in this fashion computing D8, D16, etc., until we compute Dn-1 (any Dk computed
where k > n – 1 will be the same as Dn-1). Thus, this algorithm needs ⌈log2(n - 1)⌉ executions
of the matrix multiplication function.

You can implement the concurrent variation of matrix multiplication with an OpenMP loop
worksharing construct on the outside loop or with a call to the TBB parallel_for algorithm on
that outermost loop (there are several matrix multiplication algorithms that work in distributed
memory, too). An outer loop (the fourth loop in the code) feeds the resulting matrix back into
the matrix multiplication loops as the two input matrixes in the next iteration for this variation
of the all-pairs shortest path algorithm.

244 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

N O T E
A related graph computation is connected components. If you have an adjacency matrix, you

can use a scheme similar to the one just described to find which nodes are in the same

connected component as a given node. Another way to look at it, especially if using a directed

graph, is that you will find those nodes for which there exists a path from a given node. For

connected components, the matrix multiplication algorithm uses the logical and and logical

or operators in place of the multiplication and addition operators, respectively.

A second alternative is to use Dijkstra’s Algorithm to compute the lengths of shortest paths
from a single source. The results of this algorithm are a vector (row) of the final D matrix, while
the input is the original weight matrix, W. For all-pairs shortest path, then, each node in the
graph is run through Dijkstra’s Algorithm as the source node to fill out the distance matrix.
The computation of all shortest paths from a single node is independent of the computations
being performed for any other source node in the graph. So, we have a task decomposition
implementation for concurrency, where each task is to apply Dijkstra’s Algorithm on a node.

This variation of all-pairs shortest path is best used when the weight matrix is sparse. If the
number of edges in the graph is much less than the square of the number of nodes, you can
avoid examining and computing with the numerous entries of infinity within the weight
matrix, W.

The details of Dijkstra’s Algorithm include the use of a priority queue, sorted by (currently
known shortest) distance to the source node, to find the next node to be considered in the
algorithm. A heap is the typical implementation for this queue, and the heap data structure
will be local to the thread executing a task. As the algorithm proceeds, original values of infinity
will be updated and that new distance percolates a node up the heap. The overall concurrent
algorithm is a loop over all nodes calling Dijkstra’s Algorithm with the current node as the
source. Any method to divide up these loop iterations and assign them to threads will work.

Minimum Spanning Tree
A tree is a connected (undirected) graph that contains no cycles. One node is denoted as the
root, and this node is used as the starting point for any traversal or search of the nodes in the
tree. The spanning tree of a connected graph is a subgraph that contains all the nodes of the
original graph and a subset of just enough edges to constitute a tree. Graphs may contain many
different spanning trees.

M i n i m u m S p a n n i n g T r e e 245

N O T E
You can use depth-first search to find a spanning tree. Add edges to the tree if the node on

the other end of the edge to be searched has not already been visited. If a node has been

visited, it is already in the current partial tree and the inclusion of the edge will form a cycle.

Given a weighted graph, the minimum spanning tree (MST) is a spanning tree that has the
minimal sum of all edge weights. It is possible to have more than one MST for a graph. Looking
at Figure 10-2, you can see that the minimum spanning tree for that graph is defined by the
set of edges {(A, C) (C, E) (E, D) (D, B)} with a total weight of 4 (2 + 3 + 2 − 3).

The two best-known algorithms for finding the minimum spanning tree of a graph are
Kruskal’s Algorithm and Prim’s Algorithm. I’ll briefly explain each of these serial algorithms
before using one as the basis for a concurrent solution to the MST code.

Kruskal’s Algorithm

Kruskal’s Algorithm adds edges to the partial spanning tree such that two separate connected
components of subgraphs become a single connected component. At the outset of the
algorithm, the partial spanning tree is made up of disconnected nodes from the graph and no
edges. The edges in the graph are sorted by length. Until the tree is formed, the smallest unseen
edge is considered. If this edge is between two nodes that are in different connected
components, the edge is added to the partial spanning tree and the two components now form
a single component. New edges are chosen until a single component is created. Figure 10-4
demonstrates how edges are added to link up separate connected components of the graph
from Figure 10-2.

Notice that the main diagonal entries to the weight matrix in Figure 10-4 have been changed
from 0 to infinity. If these had been left as 0 values, the “edge” between a node and itself would
be part of any MST. For computing the MST, unless there is an explicit edge from a node to
itself, there is no such edge in the graph. We could have retained the 0 value on the diagonal
entries, but we’d need to handle these nodes as a special case to be ignored (not to mention
the problems this would cause if there really were nodes with a weight of 0 in the graph). By
using an infinite weight, there are no special cases and the algorithm is much simpler.

Figure 10-4 (b) starts with all nodes as separate components, and the lowest weight edge is
added in Figure 10-4 (c) to create a single component from the node B and node D components.
Examining the edges in sorted order adds a new edge to the partial spanning tree until the last
added edge creates one connected component in Figure 10-4 (f).

246 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

A B C D E
7 2 5

7

(a) Weight matrix (b) Nodes as connected
components

-3 8
2 4 3
5 -3 4 2

A
B
C
D
E 8 3 2

A C

D

B E

(c) Add edge (B,D),
weight= -3

A C

D

B E

(d) Add edge (A,C),
weight= 2

A C

D

B E

(e) Add edge (D,E),
weight= 2

A C

D

B E

(f) Add edge (C,E),
weight= 3

A C

D

B E

FIGURE 10-4. Example of Kruskal’s Algorithm

Prim’s Algorithm

Prim’s Algorithm takes the almost opposite tactic to Kruskal’s. This algorithm grows the MST
by adding the edge that is the minimal distance from a node that is already part of the partial
spanning tree. An initial node is chosen as the root of the spanning tree. For all nodes that are
not currently in the partial spanning tree, each edge from the node to a node in the tree is
considered, and the edge with the minimum weight is nominated. From all the nominated
edges, the one with the smallest weight (ties are handled as desired) is added to the tree, which
adds a new node to the partial spanning tree. The nominating and choosing process for the
smallest weight edge linking a node not present in the partial spanning tree is repeated until
all nodes have been added. Figure 10-5 demonstrates the order of edges added to the partial
spanning tree under Prim’s Algorithm on the graph from Figure 10-2.

M i n i m u m S p a n n i n g T r e e 247

A B C D E
7 2 5

7

(a) Weight matrix (b) Choose node A
as root

-3 8
2 4 3
5 -3 4 2

A
B
C
D
E 8 3 2

A C

D

B E

(c) Add shortest edge
connected to

{A} : (A,C),
weight= 2

A C

D

B E

(d) Add shortest edge
connected to
{A,C} : (C,E),
weight= 3

A C

D

B E

(e) Add shortest edge
connected to
{A,C,E} : (E,D),

weight= 2

A C

D

B E

(f) Add shortest edge
connected to

{A,C,D,E} : (D,B),
weight= -3

A C

D

B E

FIGURE 10-5. Example of Prim’s Algorithm

Node A is arbitrarily chosen as the root of the spanning tree in Figure 10-5 (b). After that, the
edge with the lowest weight and that is adjacent to a node in the partial spanning tree is added
to the tree. The final results are the same in Figures 10-4 and 10-5. The order of the nodes
added, however, is different. For example, the edge (D,B) is included first in Kruskal’s
Algorithm, but is added last in Prim’s Algorithm (for the given graph and starting node). The
order of nodes added to the MST by Prim’s Algorithm all depends on which node is chosen as
the root.

Besides the order of edge inclusion, there is one other major difference between the two
algorithms. Kruskal’s Algorithm needs to sort the edges by length, whereas Prim’s Algorithm
simply needs to keep track of the edge that has minimum distance from an unused node to
some node in the partial tree. You can use a heap data structure to make the overall smallest
length edge available for Kruskal’s Algorithm; a pair of arrays, with an element for each node
in the graph, will keep track of which is the minimal edge from each unused node and the
length of that edge for Prim’s Algorithm. A simple search of the arrays within Prim’s Algorithm
will determine the next node to be added to the tree.

248 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

Which Serial Algorithm Should We Start With?

With my eye toward a concurrent implementation, I’m going to favor Prim’s Algorithm over
Kruskal’s. The biggest reason for this is that while edges can be sorted concurrently, the method
that considers nodes from the heap needs to be serial in order to keep track of the merging of
connected components. I can too easily come up with an interleaving where two threads each
draw out an edge that would merge the same two components without some nontrivial
synchronization. Thus, I’ll use Prim’s Algorithm as the basis for a concurrent MST code (as an
added benefit of not using Kruskal’s Algorithm as a base code, we don’t have to implement a
thread-safe heap—another big reason to go with Prim’s). Example 10-9 is a serial
implementation of Prim’s Algorithm.

EXAMPLE 10-9. Serial implementation of Prim’s Algorithm

void Prims(float **W, int **T, int N)
{
 int i, j, k;
 int *nearNode = new int[N];
 float *minDist = new float[N];
 float min;

 for (i = 1; i < N; i++) {
 nearNode[i] = 0;
 minDist[i] = W[i][0];
 }
 for (i = 0; i < N-1; i++) {
 min = FLT_MAX;
 for (j = 1; j < N; j++) {
 if (0 <= minDist[j] && minDist[j] < min) {
 min = minDist[j];
 k = j;
 }
 }
 T[i][0] = nearNode[k];
 T[i][1] = k;
 minDist[k] = −1;
 for (j = 1; j < N; j++)
 if (W[j][k] < minDist[j]) {
 minDist[j] = W[j][k];
 nearNode[j] = k;
 }
 } // for i
 free(nearNode); free(minDist);
 return;
}

The Prims() function in Example 10-9 assumes that there are no negative edges in the graph.
If negative edges are possible, we will need to modify some of the conditional expressions to
account for this. Three parameters are used: the weight matrix for the graph (W), a pointer that
will return the minimum spanning tree as a vector of edges (T), and the number of nodes in
the graph (N). The declarations in the function include an array to note the nearest node in the

M i n i m u m S p a n n i n g T r e e 249

partial tree for each other node (nearNode), an array that holds the (minimum) distance from
each node to the nearest node in the partial tree (minDist), and a variable to hold the overall
minimum from minDist (min).

A node is chosen as the root of the partial minimum spanning tree. Just for convenience, the
algorithm chooses node [0]. The initial values for elements of nearNode are set to [0], the only
node in the partial tree, and the initial values for minDist will be the corresponding weights
from each node to node [0] taken from the weight matrix.

The second for loop in the function iterates N−1 times. Each iteration will add an edge to the
partial tree (since a tree with N nodes has N−1 edges). The code takes three steps to find the
next edge to add to the tree. First, it finds the node that is the shortest distance from any node
in the partial tree. Next, the associated edge is added to the partial tree. Finally, the minimum
distances from the nontree nodes to the partial tree are updated in light of the newly added
node.

To find the node that is the minimum distance to any node in the partial tree, the standard
minimum-seeking algorithm is used. That is, the code in the first j loop examines all nontree
elements of minDist in order to find the smallest value stored there (min) and the corresponding
node (k) from the graph. Once the minimal distance is found, the corresponding edge is stored
in the tree by saving the two nodes defining the edge (nearNode[k], k) into the tree array, T.

Note that the conditional expression used to find the minimum value includes a test to
determine whether or not the node has already been added to the tree by first checking to
ensure that the minDist entry for a node is nonnegative. This pretest condition is used because
the element of minDist that is found to be minimal is overwritten by −1 after the new tree edge
is saved. This value simply needs to be something smaller than the smallest edge weight in the
graph. Thus, if we use negative edge weights, we might use a value like FLT_MIN instead.

The third step updates the minimum distance of each nonroot node from a node in the partial
tree by checking to see whether the newly added tree node is closer to these nodes. The
assignment of −1 to the minDist entries in the previous step will ensure that the nodes already
within the partial tree do not get these updates.

N O T E
Looking to cut down on the number of conditional expressions evaluated in the code for the

concurrent version, I thought to use FLT_MAX instead of −1 to note when a node had been

added to the tree. This would eliminate the need for the pretest condition in the first j loop.

However, since every noninfinite value in the weight matrix would be less than FLT_MAX, the

test in the second j loop would have treated each node in the partial tree as if it had still not

been added.

250 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

Concurrent Version of Prim’s Algorithm

Edges need to be added to the partial tree one at a time to ensure that the correct edges are
used. We can’t just stick an OpenMP loop worksharing construct around the second i loop of
the serial code in Example 10-9. So, this leaves us with the mission of trying to parallelize the
steps within each iteration of the i loop. Let’s look at these steps, starting from the last and
moving to the first.

The final step, updating the minimum distances of nontree nodes to the partial tree, is made
up of independent operations. Each node is looking at the weight of an edge from itself to the
newly added tree node, and updating the corresponding element of minDist. We could use an
OpenMP loop worksharing construct on this loop.

The second step, adding the chosen edge to the partial tree, must be done sequentially. If we’re
using OpenMP, we could do this with the single construct (the master construct doesn’t have
the implicit barrier we need to ensure that the tree and node updates are done before the third
step commences). Since each thread will be writing the same values, we could allow all threads
to update the same elements of T and minDist. There are no correctness issues for this benign
data race, but there would be performance implications of multiple cores updating entries in
the same cache line. To decide which method is better, we need to weigh the overhead of the
single cache line being moved between cores versus the overhead of pausing threads, running
code in serial, and then starting threads up again for the final step. (I’m assuming that the first
step can utilize threads, which is a safe bet since I’ve looked ahead and know how it all turns
out.)

For the first step, I presume the code can run concurrently. If this is possible, we’d need to
have both min and k globally accessible, and that would mean possible synchronization at every
iteration of the j loop. That’s just a bit too much overhead. Rather than looking at the bits and
pieces used for the computation, we should step back and look at what kind of computation
is being done. Lo and behold! This is a reduction operation to find the minimum and, more
importantly, the index of that minimum, which is the node of the graph that should next be
added to the partial tree.

After recognizing that this first step is just a reduction, you may realize that we can’t do this
operation with the OpenMP reduction clause. The algorithm doesn’t need the minimal value
stored in minDist, but the index of the element storing that value. Even if we had a min operator
for use in the reduction clause (which is supported in FORTRAN), there’s no operator that will
return the index of a minimal element. Thus, we will need to write the reduction by hand (see
Chapter 7) or use the parallel_reduce algorithm from TBB. Since this computation is right out
of the TBB tutorial examples, let’s go with TBB. Example 10-10 has an adapted version of the
tutorial example for the concurrent MST algorithm.

M i n i m u m S p a n n i n g T r e e 251

EXAMPLE 10-10. TBB class to find the index of the minimum element via parallel_reduce

class NearestNeighbor {
 const float *const NNDist;

public:
 float minDistVal;
 int minDistIndex;

 void operator()(const blocked_range<int>& r) {
 for (int j = r.begin(); j != r.end(); ++j) {
 if (0 <= NNDist[j] && NNDist[j] < minDistVal) {
 minDistVal = NNDist[j];
 minDistIndex = j;
 }
 }
 }

 void join(const NearestNeighbor& y) {
 if (y.minDistVal < minDistVal) {
 minDistVal = y.minDistVal;
 minDistIndex = y.minDistIndex;
 }
 }

 NearestNeighbor(const float *nnd) :
 NNDist(nnd), minDistVal(FLT_MAX), minDistIndex(-1) {}

 NearestNeighbor(NearestNeighbor& x, split) :
 NNDist(x.NNDist), minDistVal(FLT_MAX), minDistIndex(-1) {}
};

The operator() finds the minimum value and the index of that value, disregarding any −1
values, within a portion of the nearest neighbor distance array (NNDist). The join() method
takes two minimum distances, from two tasks, and keeps the smaller of these along with the
associated index.

The class given in Example 10-10 will support the parallel_reduce algorithm to find the node
closest to the partial tree. For the rest of the concurrent Prim’s Algorithm implementation, we
can just as easily use the TBB parallel_for algorithm for the loop of step three. In keeping with
Simple Rule 5 (to use the best method for implementation), I’m going to promote a mixed
solution using TBB for the first step and OpenMP for the loop of the third step. This mixed
code is shown in Example 10-11.

EXAMPLE 10-11. Concurrent version of Prim’s Algorithm and helper function

int NodeNearestToTree(float *a, int n)
{
 NearestNeighbor Node(a);
 parallel_reduce(blocked_range<int>(0,n), Node, auto_partitioner());
 return Node.minDistIndex;
}

252 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

void cPrims(float **W, int **T, int N)
{
 int i, j, k;
 int *nearNode = new int[N];
 float *minDist = new float[N];
 float min;

 for (j = 1; j < N; j++) {
 nearNode[j] = 0;
 minDist[j] = W[j][0];
 }
 for (i = 0; i < N-1; i++) {

// Step 1
 k = NodeNearestToTree(minDist, N);

//Step 2
 T[i][0] = nearNode[k];
 T[i][1] = k;
 minDist[k] = -1;

//Step 3
#pragma omp parallel for
 for (j = 1; j < N; j++)
 if (W[j][k] < minDist[j]) {
 minDist[j] = W[j][k];
 nearNode[j] = k;
 }

 } // for i
 return;
}

This code uses a function, NodeNearestToTree(), to call the parallel_reduce algorithm with the
current minDist array. This was part of the structure of the TBB tutorial example as well. Now,
the first step in the cPrims() function is a call to this partner function, which, in turn, does the
search concurrently and returns the desired node index into the variable k.

After the nearest node to the partial tree has been identified, the tree is updated with the
appropriate edge and the newly added node is marked to prevent it from being considered in
the future. This step is done in serial.

Finally, the distance to a node in the partial tree is updated for those nodes that are not yet
included in the partial tree. For any node that has an edge to the newly added tree node, if
that edge is shorter than the previously known edge connecting it to a node in the tree, an
update is made to reflect the shorter connection to the MST. In Example 10-11, the loop that
does this runs concurrently by using an OpenMP loop worksharing construct.

M i n i m u m S p a n n i n g T r e e 253

Design Factor Scorecard

How efficient, simple, portable, and scalable is the concurrent version of the minimum
spanning tree code using two different threading libraries? Let’s review the implementation
with respect to each of these categories.

Efficiency

There is no need for mutual exclusion and synchronization objects in Example 10-11. No global
data is updated in the first step, the global updates are done in serial in the second step, and
the third step divides up the arrays to be updated so that elements assigned to threads will not
overlap. Depending on the number of threads and loop iterations in the third step, there may
be some sharing of cache lines between threads. Informed scheduling of iterations can reduce
any performance hits from such sharing.

The “elephant in the room,” as far as efficiency goes, is the potential for a severe penalty for
switching thread models after a serial region. Would a pure TBB solution perform better than
the mixed solution given here? This would be something worth testing. Your mileage may
vary, so try both ways to see if the difference is significant.

Simplicity

The concurrent version is not all that different from the serial version. The OpenMP pragma
keeps the serial code of the algorithm’s third step intact. The biggest change is the substitution
of the call to the NodeNearestToTree() function in place of the serial code loop. The
NearestNeighbor class code is very straightforward in how it finds the node (index) that is
minimal distance from the partial spanning tree.

Portability

You can code the loops in the first and third steps with an explicit thread library. Dividing up
the iterations and assigning them to threads is an idea that we’ve dealt with quite a few times
already. The trick is the barrier synchronization needed after each of the concurrent steps to
ensure that the results of those steps are complete and available for the subsequent parts of
the code to be executed. The code in Example 10-11 has the implicit barrier synchronizations
built in at the end of the parallel_reduce algorithm (waiting for all threads to finish) and
OpenMP loop worksharing construct.

You can divide the graph data by nodes across distributed processes and use a collective
reduction communication to find the node nearest to the partial tree. You can then use a
broadcast communication to inform all processes in the computation of the identity of the node
added to the tree. The updates of the nearest nodes in the third step can be done locally, too.
The message-passing and other communications provide the needed barrier synchronizations
not readily available from explicit threads.

254 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

Scalability

Have you figured out that the amount of work for each iteration of the outer i loop gets smaller
as execution of the code progresses? Well, actually, the number of nodes to be seriously
considered each time through the loop decreases at a steady pace. As the number of nodes in
the partial tree increases, the number of possible nodes that would have associated values
updated in the first or third steps will decline. Threads will need to iterate through all nodes
assigned by the scheduling algorithms, but fewer and fewer will generate even the chance of
some computation in the first and third steps.

In an extreme arrangement, imagine nodes that are assigned to threads in a static fashion and
added to the partial spanning tree in indexed order. In the midst of this situation we would
have threads without any potential new tree nodes, while other threads would have all the
potential nodes. Near the end, then, only one thread would even have the possibility of doing
worthwhile computations and updates in the first and third steps.

The algorithm inherently contains a steady reduction in scalability. Does this decline in
scalability and the load imbalance posited in the last paragraph have a noticeably adverse affect
on the performance? We could alleviate the extreme cases of load imbalance by using a more
dynamic scheduling of nodes to threads in each iteration of the i loop. (The TBB task scheduler
should yield some modicum of dynamic scheduling automatically, so a schedule clause on the
OpenMP pragma should be sufficient.) Even so, there are still scenarios that we could devise
to limit the efficacy of dynamic iteration scheduling.

The cause of these imbalances is the need to look through all nodes, tree or nontree, in the
first and last steps of the algorithm loop. Would a more dynamic method for keeping only
nontree nodes around in the first and third steps be sensible? You might have a better idea,
but the first thing I think of is to use a linked list of struct nodes containing the node number,
the node in the partial tree that is closest to the node, and the length of the shortest edge
between these nodes. The first step goes through all the nodes in the list to find the one that
is the minimum distance from the partial tree; the second step adds the edge to the tree and
removes the node from the linked list; and the third step updates the distances of the nodes
remaining on the list (one way to process linked list nodes concurrently is to create a task to
process each node and have those tasks placed in a queue to be accessed by threads—both
OpenMP and TBB support this kind of concurrent execution).

Clearly, we would need to change the code in all steps if we adopted the linked list idea. I hope
you agree that processing nodes in a linked list is going to require code that is less simple than
running through an array. More importantly, will there be an adequate performance benefit
possible by taking the time and trouble to implement such a solution? Again, this is something
that we would need to implement and compare to the original code version for a definitive
answer. With the linked list structure, we get good load balance, but we will have a very real
reduction of work after each iteration of the outermost loop. For a fixed number of threads,
the amount of work will eventually get to the point where each iteration is dwarfed by the

M i n i m u m S p a n n i n g T r e e 255

threading overhead. At least with the array implementation, threads consider every assigned
node, even if it is only to find that the node was already part of the tree.

There may be a crossover point in graph sizes that would favor one implementation over
another. I suspect that for large graphs (e.g., thousands or tens of thousands of nodes), it is
more likely that dealing with only active, nontree nodes will reap adequate performance and
scalability benefits versus the original code in Example 10-11. Such a crossover point, if it exists,
would need to be determined experimentally.

256 C H A P T E R 1 0 :   G R A P H A L G O R I T H M S

C H A P T E R E L E V E N

Threading Tools

THIS CHAPTER MENTIONS SOME DEBUGGING AND PERFORMANCE TOOLS THAT YOU CAN USE on
threaded applications. I haven’t dwelled on issues of correctness or performance, except in
cases that might be obvious within the development decisions made on the codes presented.
As the complexity of the code increases, the use of software tools makes the tracking down
and elimination of bugs and performance problems much easier.

The set of tools covered in this chapter is certainly not exhaustive. I expect many other tools
to be developed and released after publication of this text. The longevity of several tools
presented guarantees that they should still be available by the time you read this, though some
of the names of tools may change.

To again avoid looking like a corporate shill, I’ve tried to give only the barest details on these
tools (and keep the marketspeak to a minimum). I can’t vouch for the accuracy of any of the
commands or details about current versions of tools beyond the time of this writing. For more
complete and up-to-date information, please refer to the individual tool manuals and other
reference guides.

Debuggers
The most frequent debugging tool in use today is the printf statement. When trying to track
down threading errors (e.g., data races, deadlock), adding such statements can cause problems
to “disappear.” They’re not gone; they’re just hiding under the altered execution order of the
new application. Traditional debuggers can also mask threading errors. There are better tools
to find threading errors and I’ve mentioned one below. However, if you don’t divide up a loop
just right, or if you mess up a conditional expression when transforming your serial code to a
concurrent version, or if you make access a local copy of something when you should be using
a global copy, you can use a standard debugging tool to locate these types of errors.

Thread-Aware Debugger

Two popular Linux debuggers, dbx and gdb, are thread-aware and can assist in tracking down
logic errors that aren’t related directly to the threaded implementation of the code.

In dbx, the thread subcommand displays and controls user threads. By itself, this command
displays information about all user threads. Optionally, you can display information about
specific threads by adding thread numbers as parameters. You can hold and release thread
execution using thread hold and thread unhold, respectively. Both subcommands apply to all
threads if no parameters are given, or to the chosen threads with the given thread numbers.
To examine the current status of a thread’s execution with print, registers, and where, set the
current thread by first issuing the command thread current <threadnumber>. To print a list of
the threads in the run, suspended, wait, or terminated states, use the run, susp, wait, and term
flags, respectively, on the thread subcommand. The mutex and condition subcommands display
information on mutexes and condition variables.

258 C H A P T E R 1 1 :   T H R E A D I N G T O O L S

The gdb debugger notifies the user when a new thread is spawned during the debug session.
The thread command with a thread number parameter will set the chosen thread as the current
thread. All commands requesting information on the program are executed within the
framework of the current thread. Issuing an info threads command displays the current status
of each thread within the program. This includes the gdb-assigned thread number, the system’s
thread identifier, and the current stack frame of the thread. An asterisk to the left of the thread
number indicates the current thread. To apply a command to other threads in addition to the
current thread, use the thread apply command. This command takes a single thread number,
a range of thread numbers, or the keyword all before the command that should be applied to
the designated threads. You can assign breakpoints to specific threads using the break
<linespec> thread <threadnumber> command.

Other debuggers that can debug multithreaded applications include the Intel Debugger (idb)
and Totalview from Totalview Technologies. The Intel debugger has dbx and gdb emulation
modes that implement many of the thread-specific commands available in those debuggers.
Totalview can debug multiple processes that are executing within a distributed, message-
passing environment through MPI (Message-Passing Interface). Also, within a chosen process,
you can select, examine, and control multiple threads through the Totalview GUI.

Thread Issue Debugger: Thread Checker

Storage conflicts are the most common errors in multithreaded applications. They can also be
the hardest to isolate because of the nondeterministic scheduling of thread execution by the
operating system. Running a threaded code on the same system during development and
testing may not reveal any problems; yet running the same binary on another system with any
slight difference that could affect the order of thread execution may yield unexpected or
erroneous results on the very first execution. The Intel Thread Checker is designed to identify
storage conflicts, potential deadlocks, thread stalls, and other threading errors within code
threaded with Intel TBB, OpenMP, POSIX, or Windows Threads. (This tool would have saved
me the two hours I spent tracking down the problem with switching arrays in the straight radix
sort code development.)

As a plug-in to the VTune Performance Analyzer, Intel Thread Checker runs a dynamic analysis
of a running threaded application. To find storage conflicts, for example, the tool watches all
memory accesses during threaded execution. By comparing the addresses accessed by different
threads and determining whether or not some form of synchronization is protecting those
accesses, Thread Checker can find read-write and write-write conflicts. Dynamic analysis will
catch obvious errors of accessing the variables visible to multiple threads, as well as memory
locations accessed indirectly through pointers.

To watch memory accesses, Thread Checker must insert instrumentation within the
application for that purpose. The instrumentation can be inserted directly into the binary file
(binary instrumentation) just before the analysis is run, or it may be inserted at the time of

D e b u g g e r s 259

compilation (source instrumentation) if using an Intel Compiler. Regardless of how
instrumentation is done, I recommend using a debug build that includes symbols and line
numbers, has no optimization, and has a binary that can be relocated (for binary
instrumentation). Keeping debug symbols and line numbers will give Thread Checker the
chance to point directly to source lines that have possible problems; turning off all optimization
will keep the application code closest to the original source order. (If there is a threading error
with optimization, but no problem without optimization, the problem is more likely in the
compiler and not your threading.) Also, since the code has been instrumented, there will be
an increase in binary size and memory usage during execution. More importantly, though, is
that the execution time will be increased. Thus, you should use a small data set that will still
run through the relevant portions of the threaded code to ensure that results can be generated
in a reasonable amount of time.

Performance Tools
It’s all about performance. Concurrent and parallel execution, that is. If you can’t get a faster
execution time or compute with a larger data set in a fixed amount of time, you’re spinning
your wheels. Sometimes you need a little help to determine what might be causing your lack
of performance. A performance problem might not be a direct outcome from some threading
API function or synchronization object, but rather derived from the way data is distributed to
threads or how threads are utilizing the finite resources on your execution platform. The tools
in this section can point you in the right direction to where performance bottlenecks may be
hampering your application or where you should begin your investigation of where to add
(more) threading. It will still be up to you to decide on the best remedy, though.

Profiling

The purpose of profiling the execution of an application is to find the hotspots of that
application. The hotspots indicate where you should focus your efforts to optimize the code to
reduce the impact of negative activities. Parts of the application that take the largest percentage
of execution time are good candidates for concurrency, since these hotspots are going to be
the most computationally intensive portions of the serial code.

The basic Linux profiling tool, gprof, displays data that is collected during the execution of an
application compiled and instrumented for profiling. The −pg flag, used in the cc command,
will instrument C code. The instrumented binary will generate a profile data file (gmon.out is
the default) when run. The call graph data that gprof outputs includes the amount of time
spent in the code of each function and the amount of time spent in the child functions called.
By default, the functions are arranged in order of execution time, from largest to smallest. This
order gives you a ranked list of the functions that you should examine further for optimization
or for parallelization by threads.

260 C H A P T E R 1 1 :   T H R E A D I N G T O O L S

The Intel VTune Performance Analyzer has two primary collectors: sampling and call graph.
During sampling runs of the application, the collector interrupts the processor when triggered
after a number of microarchitectural events have occurred. Typically this will be ticks of the
system clock, but you can set the trigger to many different architectural events. During the
interrupt, the collector records the execution context, including the current execution address
in memory, operating system process and thread ID executing, and executable module loaded
at that address. Once execution of the target application has completed, the VTune
Performance Analyzer GUI displays the sampling data for the entire system (including all the
processes that were running during the sampling run). You can find hotspot data at the
function and even source-line level (if you use the proper compilation and link flags when
building the application).

The call graph collector in the VTune Performance Analyzer is similar to the gprof profiler. The
target application is instrumented just before execution from within the VTune Performance
Analyzer. Unlike the sampling collector, which can take samples from any process or module
running during collection, the call graph collector will profile only the application of interest.
The instrumentation records the caller of a function, how much time was spent within a
function, and which child functions were called, as well as the time spent within those child
function calls. The function timing results of call graph are available within a table format, but
you can also view them as a graphical representation of the call tree structure resulting from
the application run. You can find function execution time and number of callers or receivers
by hovering the mouse over different parts of the displayed portions of the call tree. Red arcs
highlight the call sequence that leads to the function with the longest execution time, known
as the critical path. This provides a graphic indication of the flow of control of your application,
including the parts you should consider for optimization or threading.

Thread Profiling: Standard Profile Tool (Sample Over Time), Thread Profiler

Besides viewing the collected sampling data as an aggregate over the course of the entire
execution time that was sampled, the VTune Performance Analyzer can display the sampling
results over time. That is, it can tally the number of samples taken that are associated with
selected modules within discrete time units during the sampling interval. In this way, you can
measure the load balance between threads of an application. If more samples are taken of some
threads during a given time range than others, the former threads will have typically done
more computation within that time frame. While you can deduce some load imbalances from
the aggregate data, the sample over time feature allows you to find the section(s) of code—
down to source lines—that are the cause.

The Intel Thread Profiler is a more general tool for identifying performance issues that are
caused by the threading within an application. Intel Thread Profiler works on codes written
with TBB, OpenMP, POSIX, or Windows Threads. Within the OpenMP interface, aggregate
data about time spent in serial or parallel regions is given via a histogram. The histogram also
represents time spent accessing locks or within critical regions or with threads waiting at

P e r f o r m a n c e T o o l s 261

implicit barriers for other threads (imbalance). The summary information can be broken down
to show execution profiles of individual parallel and serial regions, as well as how individual
threads are executed over the entire run. The former display is useful for finding regions that
contain more of the undesired execution time (locks, synchronized, imbalance), while the
latter is useful for discovering if individual threads are responsible for undesired execution.

For an explicit threading model, Intel Thread Profiler employs critical path analysis. This is
unrelated to the critical path of call graph analysis within VTune Performance Analyzer. As the
application executes, the Intel Thread Profiler records how threads interact with other threads
and notable events, such as spawning new threads, joining terminated threads, holding
synchronization objects, waiting for synchronization objects to be released, and waiting for
external events. An execution flow is the execution through an application by threads where
each of the events noted earlier can split or terminate the flow. The longest flow through the
execution is the one that starts as the application is launched and continues until the process
terminates. This is dubbed the critical path. Thus, if you were to make any improvement in
threaded performance along this path, the total execution time of the application would be
reduced, increasing overall performance.

The data recorded along the critical path is the number of threads that are active (running or
able to be run if additional core resources were available) and thread interactions over
synchronization objects. The Intel Thread Profiler GUI has two major divisions to display the
information gathered during the threaded execution: Profile View and Timeline View. Profile
View displays a histogram representation of data taken from the critical path. You can organize
this histogram with different filters, including concurrency level (how many threads were
active along the critical path), object view (what synchronization objects were encountered by
threads), and threads view (how each thread spent time on the critical path). These filters and
views can help you determine how much parallelism was available during the application
execution, locate load imbalances between threads, and determine which synchronization
objects were the most contended between threads. Timeline View shows the critical path over
the time that the application ran. You can see the critical path switch from one thread to
another and how much time threads spent executing or waiting for a synchronization object
held by another thread.

Anything Else Out There?
Just going through beta testing as I was putting the finishing touches on this sentence is the
Intel Parallel Studio tool. This is a parallel programming tool from Intel that plugs right into
the Microsoft Visual Studio environment. The four components to Parallel Studio and their
usage are:

262 C H A P T E R 1 1 :   T H R E A D I N G T O O L S

Intel Parallel Advisor
Identifies where to insert parallelism, recognizes conflicts, and recommends solutions.

Intel Parallel Composer
Enables the incorporation of parallelism with a C/C++ compiler and threaded libraries.

Intel Parallel Inspector
Finds memory and threading errors.

Intel Parallel Amplifier
Finds multicore performance bottlenecks.

These four components blend right into the four steps of the threading methodology that I
mentioned back in Chapter 1.

With the interest and desire to make parallel programming easier, there is going to be a
veritable explosion of software tools made available to assist in the process of writing correct
and efficient concurrent applications. I expect that those university research professors not
looking to put out a new programming system are developing or have developed a software
tool for analyzing concurrent codes.

Go Forth and Conquer
New tools, new programming challenges, and new ways to think about software design. It’s a
brave new world that we’ve just begun to enter. I hope you’re able to join me in it and come
along for the ride, and maybe take the wheel yourself every once in a while. With your gusto,
new skills, and new software tools, it should be a time of excitement and wonder. Or at least,
with this book, it won’t be as scary as you imagined it might be.

G o F o r t h a n d C o n q u e r 263

G L O S S A R Y

Adjacency matrix
A graph representation method that uses
a 2D array. Each row and column
corresponds to a node from the graph. If
an edge exists between two nodes, a 1
value is placed at the intersection of the
two nodes; otherwise, a 0 is stored to show
that no edge exists.

Asynchronous
Separate execution streams that can run
concurrently in any order relative to each
other are asynchronous.

Atomic
A type of operation that cannot be divided
into smaller components or is allowed to
complete execution before the operating
system swaps the executing thread out of
the processor.

Barrier
A synchronization object that holds all
threads until every participating thread
has arrived. Upon the arrival of the last
thread, all threads are released to continue
execution.

Benign data race
A data race that has no adverse
consequences. For example, threads may
write the same value into a shared location
or a flag may be updated by one thread as
another is reading, leading to a little extra
work for the reading thread if it does not
see the updated flag value.

Bus overload
A situation in which data from I/O or
memory cannot be moved at the rate of
the thread or process requests. This
overloading of the bus capacity will cause
threads to wait for memory requests to be
satisfied.

Cache prefetching
Processors may have special hardware that
allows them to predict which line of cache
will be needed next by an executing
process. The processor can retrieve (fetch)
these cache lines prior to the thread
requiring them.

Chunk
A portion of a larger data set that can be
assigned to a thread for processing.

265

Compiler pragma
A programming notation that a compiler
can interpret designed to provide
information or hints about the code
around the pragma and how to handle it.

Complete binary tree
A binary tree structure in which each level
of the tree, except perhaps the deepest, is
full. Leaf nodes are placed as far left as
possible, if that level of the tree is not full.

Concurrency
The capability of having more than one
computation in progress at the same time.
These computations may be on separate
cores or they may be sharing a single core
by being swapped in and out by the
operating system at intervals.

Connected components
A set of connected subgraphs with no
shared nodes between any two subgraphs.
A graph with a number of nodes and no
edges is one extreme example of a graph
built from connected components.

Connected graph
A graph in which there is a path from any
node to any other node.

CRCW PRAM
Concurrent Read, Concurrent Write
PRAM. A theoretical model of the
architecture of a shared-memory machine
with more than one processor. Multiple
threads are allowed to read an item within
the shared memory simultaneously with
other threads, and are allowed to update
the item at the same time as other threads.
The model itself specifies the value that is
written to a shared memory location by
multiple threads.

CREW PRAM
Concurrent Read, Exclusive Write PRAM.
A theoretical model of the architecture of
a shared-memory machine with more
than one processor. Multiple threads can
read an item within the shared memory

simultaneously, but access to update a
shared location must be restricted to a
single thread at any time.

Critical region
A portion of code from a concurrent
algorithm where shared variables are
accessed and updated. Mutual exclusion is
needed for execution of a critical region by
threads to prevent a data race.

Critical section
Alternate name for “critical region.” Also,
the name of a synchronization object type
in the Windows Threads API.

Data decomposition
A method for identifying independent
work that focuses on dividing large data
sets that can be processed concurrently.
For each chunk of data that is assigned to
a thread, the computation required to
process that data is assigned to that thread.

Data flow parallelism
Style of concurrency that executes an
instruction when the arguments for that
instruction are ready for use, as opposed to
the original sequence in which the
instruction was written.

Data race
The result of having two or more threads
accessing the same shared resource or
memory location, where at least one of the
threads is attempting to update the shared
resource. The threads are “racing” to
deposit their value into the contended
memory location or to read the memory
location before or after a thread updating
the value.

Deadlock
A situation in which one or more threads
are waiting for an event that will never
occur. The most common situation is
when two threads are each holding a
synchronization object that the other
thread wants and there is no way for one
thread to release the object it holds in
order to allow the other thread to proceed.

Compiler pragma

266 G L O S S A R Y

Dependency
In a serial program, a coding sequence or
property of the algorithm that may
prevent parallelization of the code. There
are two broad categories of dependencies:
data, where reference order to the same
memory location is vital to the proper
execution of the algorithm; and execution,
where two blocks of code must execute in
the same relative order for correct
execution of the algorithm. In some cases,
dependencies can be removed or rewritten
to be able to parallelize the affected code.

Deterministic
Given the same inputs, a deterministic
application will present the same
(observable) results each and every time.

Directed graph
A graph whose edges are ordered pairs of
nodes; this allows connections between
nodes in one direction. When drawn, the
edges of a directed graph are commonly
shown as arrows to indicate the
“direction” of the edge.

Distributed-memory model
A configuration of processors connected to
each other through a network. Memory
attached to each processor is directly
accessible to that processor only. Data can
be shared between processors by
executing processes utilizing API functions
designed for moving data across the
network.

Dynamic allocation
The allocation of work to threads as
needed during the execution of the
concurrent computation.

Edge
The part of a graph data structure that
connects two nodes in the graph.

Edge weight
The real value associated with an edge in
a graph.

Efficiency
A quasimetric used throughout this book
to describe how well memory and other
resources of the processor and platform
are utilized by a concurrent
implementation.

Efficiency (Speedup)
The ratio of speedup to the number of
threads. This metric is expressed as a
percentage that reflects on the average
amount of the execution time a thread is
actually doing computation.

Enchantingly parallel
The state in which decomposition into
tasks does not create any dependencies
between tasks. This used to be called
“embarrassingly parallel” until it was
pointed out that there was nothing to be
embarrassed about.

ERCW PRAM
Exclusive Read, Concurrent Write PRAM.
A theoretical model of the architecture of
a shared-memory machine with more
than one processor. A single thread can
read an item within the shared memory at
any time, but multiple threads are allowed
to update the item at the same time. The
model itself specifies the value written to
a shared memory location by multiple
threads.

EREW PRAM
Exclusive Read, Exclusive Write PRAM. A
theoretical model of the architecture of a
shared-memory machine with more than
one processor. Items within the shared
memory must be read and written by a
single thread at any time.

Exclusive prefix scan
A prefix scan that excludes the
corresponding vector item’s value in the
computation.

Exclusive prefix scan

G L O S S A R Y 267

Execution stream
The portion of a process launched by the
operating system that executes the
instructions of the process (application).

False sharing
Updating different elements of the same
cache line by different threads not sharing
a cache. The updates aren’t a storage
conflict, but cause cache lines to be moved
back and forth between the separate
caches. This thrashing of cache lines will
cause threads to wait for the cache to be
reloaded.

Fork-join parallelism
Form of concurrency in which threads are
spawned (forked), threads execute
concurrent tasks, and when done, threads
wait for all other threads to complete
before terminating (join).

Game tree
A tree structure in which nodes are
positions within the game, and edges
connect nodes that can be reached by a
legal move within the rules of the game.
Successive levels in the tree are the
alternation of moves between players.

Ghost cells
Extra array elements that surround a
chunk of data. These are used to hold
copies of values stored in array elements
that would be in the same relative
positions as the cells if the entire data array
were considered as a whole.

Gustafson-Barsis’s Law
A speedup metric that takes into account
an increase in the data size in proportion
to the increase in the number of cores. The
speedup is computed as if the larger data
set could be executed in serial.

Granularity
Loosely defined as the amount of
computation done before synchronization
is needed. The longer the time between
synchronizations, the coarser the

granularity will be. Fine-grained
parallelism runs the danger of not having
enough work assigned to threads to
overcome the overhead costs of using
threads. Adding more threads, when the
amount of computation doesn’t change,
only exacerbates the problem. Coarse-
grained parallelism has lower overhead
costs and tends to be more readily scalable
to an increase in the number of threads.

Graph
A computation object that is used to model
relationships among things. A graph is
defined by two finite sets: a set of nodes
and a set of edges. Each node has a label to
identify it and distinguish it from other
nodes. Edges in a graph connect exactly
two nodes and are denoted by the pair of
labels of nodes that are related.

Gray code
An ordering of 2n binary numbers such
that a single bit is different between
successive numbers in the sequence.

Heisenberg Uncertainty Principle
Knowing the position of something
disallows the chance to measure the
momentum of that thing, and conversely,
being able to measure a thing’s
momentum precludes discovering that
thing’s position. This principle is typically
applied to particles in small regions of
space.

Helper function
A function that is threaded but calls
another function to do the actual
computations. A helper function can
unpack the multiple parameters from the
single parameter of a threaded function to
be used in the call to the function doing
the processing. The helper function can
also provide a “waiting area” for threads in
a pool and receive signals to direct the
threads back to work when needed.

Execution stream

268 G L O S S A R Y

Hotspot
A portion of the code that has a significant
amount of activity. Typically, this activity
is clock cycles or execution time spent in
that code portion. This activity could also
be cache misses, I/O accesses, floating-
point operations, etc.

Inclusive prefix scan
A prefix scan that includes the
corresponding vector item’s value in the
computation.

Intel Threading Building Blocks
A template-based threading library for
C++ programs. The library includes
parallel algorithms, concurrent
containers, and synchronization
primitives.

Length
See Path length.

Linear speedup
A speedup curve that is drawn as a straight
line on a speedup graph. This results when
the speedup increases at a steady rate as
more threads (cores) are utilized.

See also Perfect speedup.

Livelock
A situation in which threads are doing
some computation but are unable to
proceed past the current computation
phase due to the actions of some other
thread. This is typically caused by resource
starvation where there’s constant change,
with no thread progressing. Two cars that
meet in a narrow alley can be in livelock if
there is not enough room for them to get
past one another. The cars jockey back and
forth and side to side, but are unable to
proceed. The first meeting of Robin Hood
and Little John on the log bridge is another
example of livelock (solved when Little
John pushed Robin off the bridge into the
water).

Load balance
The measure of how the overall work is
equitably divided among the threads. For
best performance, each thread should be
assigned the same or roughly the same
amount of work. This will ensure that
threads finish assigned work at the same
time and threads aren’t going to sit idle
waiting for other threads that have been
given more work.

Local variable
A variable that is accessible to only a single
thread. Most common is for each thread in
the application to have a copy of a variable
that is given the same name.

Message-passing
A parallel programming method in which
processes share data and synchronize with
each other by moving data (messages)
from the memory of one process to
another through API calls designed for
such communication operations.

Modulo locks
An algorithmic technique to associate
multiple indexed objects with a single lock
object. This method is a compromise
between having a single lock to protect the
entire set of objects and using a single lock
object per object to be protected.

Mutex
Common name for a programming object
that is used to enforce mutual exclusion.

Mutual exclusion
The process of allowing only one thread at
a time to execute a given portion of code.

Nodes
In a graph, nodes represent the objects
whose relationship is being modeled by
the graph.

Nondeterministic
An application whose state of execution
cannot be predicted is said to be
nondeterministic. Since the operating
system schedules threads for execution on

Nondeterministic

G L O S S A R Y 269

processor resources and there are too
many factors that influence the OS
scheduling, the state of execution of a
concurrent application cannot be reliably
predicted. Typically, incorrect use of
nondeterminism in concurrent
applications will be evidenced by the
application returning different results
from the same inputs.

OpenMP
A directive- and pragma-based threading
library. An OpenMP-compliant compiler
transforms the pragmas into threaded
code. A set of APIs is available to give the
programmer more control over how
threads execute.

Out-of-order execution
Processor technology that allows the
execution of instructions to be initiated
when all operands for the instruction are
available.

Overhead
Additional work and execution time that
was not in a corresponding serial code. In
concurrent programs, this typically
consists of thread management and
synchronization API calls.

Parallel
Executing more than one computation at
the same time. These computations must
be on separate cores to be running in
parallel.

Parallel region
In OpenMP, a code segment that has been
prefixed with a parallel pragma, which will
cause the compiler to create/use threads
that will then execute the code segment
concurrently.

Parallel sum
A reduction algorithm that computes the
sum of all the elements within a data
collection.

Path
A sequence of nodes in which successive
nodes are connected by edges in the graph.

Path length
The sum of the weights of the constituent
edges along a path.

Perfect speedup
The speedup that is equal to the number
of threads applied to the parallel
execution. Graphically, this is a 45° line on
a speedup curve. This is typically the
maximum achievable speedup, and is the
execution goal of every concurrent
application.

POSIX threads
The explicit threading library available on
UNIX and Linux platforms.

Portability
A quasimetric used throughout this book
to describe how easily a concurrent
algorithm could be translated from the
given threading library to an alternative.

PRAM
Parallel Random Access Machine. A
theoretical model of the architecture of a
shared-memory machine with more than
one processor. Execution of instructions is
done in lockstep fashion (SIMD) across all
processors that are defined for the model.

Prefix scan
An algorithm that computes all partial
results of an associative operation applied
to all elements of a vector that precede the
position in the vector that stores the result.
For example, if the operation is addition,
the sum of all items with a lower index
value is computed for each item in the
vector.

Private variable
A variable that is accessible to only a single
thread. Most common is for each thread in
the application to have a copy of a variable
that is given the same name.

OpenMP

270 G L O S S A R Y

Process
The operating system’s spawned and
controlled entity that encapsulates an
executing application. A process has two
main functions. The first is to act as the
resource holder for the application, and
the second is to execute the instructions of
the application.

Pthreads
See POSIX threads.

Quicksort
A recursive sorting algorithm that first
partitions the elements to be sorted such
that the lesser elements are found to the
left and greater elements to the right of a
pivot element. Each subset is then sorted
recursively.

Race condition
A flaw in a concurrent application in
which the result is dependent on the
timing or sequence of multiple threads’
execution.

Readers/writer lock
A synchronization object that allows
either multiple threads to read the data in
a critical region or a single thread to update
the data within the critical region.

Reduction
A computation that takes a large data set
and computes a value based on the data.
Typical reduction operations include
addition, multiplication, minimum, and
maximum. The operation involved with a
reduction computation executed
concurrently must be associative and
commutative.

Reentrant code
Code that multiple threads can execute
concurrently without any adverse side
effects. The most common way to ensure
that a function is reentrant is to not update
shared variables.

Removable dependence
A dependence that can be eliminated by
rewriting the serial code. Examples of
potential removable dependencies include
recurrences and induction variables.

Rendezvous
A “meeting” of two threads to exchange
data or information.

Reordering buffer
A location where instructions wait for
other instructions to complete so that they
can be retired in the proper order. When
instructions start and execute out of order,
they will wait in the reordering buffer for
the completion of the instructions that
originally precede them.

Round-off error
The truncation of floating-point result
accuracy to fit a result into a fixed-sized
data type. With concurrent execution, the
order of arithmetic computations can be
different, which can lead to different
results than the serial code due to round-
off error.

Scalable
The capability of a process or application
to smoothly handle changes in the
number of threads and size of data without
adverse performance side effects. For
example, if you add threads to execute an
application and the speedup increases,
that is a scalable application. If the speedup
decreases, the application is not
considered scalable.

Scalability
A quasimetric used throughout this book
to describe an application’s capability to
handle changes, typically increases in
system resources (e.g., number of cores,
memory size, bus speed) or data set sizes.

Scaled speedup
See Gustafson-Barsis’s Law.

Scaled speedup

G L O S S A R Y 271

Semaphore
A synchronization object that has an
associated nonnegative count. Two
operations that are defined on a
semaphore are known as wait (if the count
is nonzero, decrement count; otherwise,
block until count is positive) and post
(increment count).

Separable dependence
A dependence that can be eliminated by
rewriting the serial code to move the
dependence outside of the code to be
parallelized. Reduction computations are
examples of a potential separable
dependence.

Simple path
A graph path that has no repeated nodes.

Sequential consistency
The property of parallel and concurrent
programs to obtain the same results as an
equivalent sequential application on the
same input data.

Shared-memory
A configuration of processors or cores that
can read and write into the same memory
address space without any special
functions or APIs.

SIMD
Single Instruction, Multiple Data stream.
This is a category of parallel hardware that
executes the same instruction on all
processors in lockstep fashion. The
processors will all have different data on
which to apply that instruction. The most
common parallel programming model for
SIMD processors is data parallelism.

Simplicity
A quasimetric used throughout this book
to describe how much or how little a
concurrent implementation resembles the
original serial code.

Speedup
The ratio of serial execution time of the
best serial algorithm to the parallel

execution time for a given number of
threads.

Starvation
A condition of execution in which a thread
is not allowed to proceed with assigned
computations. This term applies to threads
that are blocked from being scheduled into
a processor by the operating system due to
execution of higher priority threads.

Static allocation
Allocation of all the work to threads at the
outset of the concurrent computation.

Storage conflict
A situation in which two or more threads
access the same memory location and at
least one of the threads attempts to update
the shared memory location.

Streaming SIMD execution (SSE)
An instruction set and built-in, special
hardware that can execute the same
instruction on multiple arguments at the
same time.

Superlinear speedup
Speedup of an application that is higher
than the number of threads used. This
atypical speedup is only achieved through
some artifact of parallel execution, for
example, splitting the data into chunks
that easily fit into cache, which cannot be
duplicated by the serial application.

Synchronization
Coordination in the execution of multiple
threads. The most common cases of
synchronization occur when you provide
mutually exclusive access to shared
resources or gather all threads at a point in
the code before they are allowed to
proceed.

Synchronization object
A programming object that can control
how threads execute in relation to each
other or how they interact with shared
resources. Locks, mutexes, and

Semaphore

272 G L O S S A R Y

semaphores are examples of
synchronization objects.

Task decomposition
A method for identifying independent
work that focuses on the computations to
be performed by threads. At the time a task
is assigned to a thread, the data for that
task needs to be available to the thread.

TBB
See Intel Threading Building Blocks.

Thread
The operating system object that executes
the instructions of a process.

Thread-local storage (TLS)
An API available within explicit threading
libraries that creates private storage per
thread, which will persist across function
call boundaries.

Thread monkey
A programmer with wicked mad skills,
capable of designing multithreaded,
concurrent, and parallel software, as well
as grinding out correct and efficient code
to implement those designs.

Thread pool
A group of threads that are typically
spawned once and assigned work as the
need arises. When not needed, threads in
the pool are blocked, waiting for some
“wakeup” signal. By recycling threads in
the pool, the overhead of repeatedly
spawning and terminating threads every
time they are to be used is avoided.

Thread-safe
The characteristic of a function that can
execute correctly when two or more
threads call that function concurrently.

Undirected graph
A graph in which the nodes of an edge are
unordered. This implies that the edge can
be thought of as a two-way path.

Vertices
An alternate name for nodes in a graph.

Wavefront algorithm
A parallel algorithm method that allows
threads to proceed with computations at
regular intervals. Typically, some large
data structure is the basis for using this
technique, and threads sweep across the
structure one after the other like waves
washing up on shore.

Weight
See Edge weight.

Weighted graph
A graph that has a value assigned to every
edge. These values can represent some
measure of the relationship between the
nodes connected by the edge. When
speaking about weighted graphs, it is
normal to refer to the weight in terms of a
distance.

Windows Threads
The explicit threading library available on
Microsoft Windows platforms.

Worksharing
In OpenMP, a construct that distributes
the computation of the associated region
to the members of the thread team.

Worksharing

G L O S S A R Y 273

P H O T O C R E D I T S

Preface, Jeffrey D. Gallagher, Brighton Railway Station, Brighton, England

Chapter 1, Jeffrey D. Gallagher, Giant Dipper, Santa Cruz, California

Chapter 2, Jeffrey D. Gallagher, Street view from rue de Grenelle, Paris, France

Chapter 3, Jeffrey D. Gallagher, Big Ben, London, England

Chapter 4, Lorna Breshears, A binary game of Go

Chapter 5, Jeffrey D. Gallagher, Bath Cathedral, Bath, England

Chapter 6, Jeffrey D. Gallagher, Jin Mao Tower, view from the 88th floor, Shanghai, PRC

Chapter 7, Jeffrey D. Gallagher, The Giant’s Causeway, County Antrim, Northern Ireland

Chapter 8, Jeffrey D. Gallagher, Souvenir cart outside Wat Pho, Bangkok, Thailand

Chapter 9, Jeffrey D. Gallagher, Street market radish bin, rue Cler, Paris, France

Chapter 10, Jeffrey D. Gallagher, The Eiffel Tower at night, Paris, France

Chapter 11, Jeffrey D. Gallagher, Work bench, Scotts Valley, California

I N D E X

Numbers
0/1 Knapsack Problem, 225

A
abundancy of a number, 138

calculation of, 140
adjacency matrix, 222, 265
algorithms with state, 43
all-pairs shortest path algorithm, 240–245

Dijkstra’s Algorithm, 244
Floyd’s Algorithm, 240–244

concurrent implementation using TBB, 241
data race in, 242
design factor scorecard, 243
serial implementation, 241

Amdahl’s Law, 68
criticisms of, 69

analysis, identifying possible concurrency, 9
array packing

ArrayPack() function (example), 119
with prefix scan, 120

arrays
decomposition examples, 34
decomposition of, 33
recurrence relation on array access, 44
sorting, 147
summing elements (see parallel sum

algorithms)
summing elements using reduction code, 130

asynchronous, 265
atomic, 265
atomic construct, 157
atomic construct (OpenMP), 84
atomic statements, 51

interleavings of, from two or more threads, 51

B
barrier objects, 132, 265

for concurrent straight radix sort, 197
implementation for Pthreads, 134–136

benign data race, 156, 265

Beowulf Project, 15
binary keys in radix sorts, 182
binary search, 211–220

concurrent N-ary search algorithm, OpenMP
implementation, 216

design factor scorecard for N-ary concurrent
search algorithm, 218

iterative version, binary search algorithm, 211
N-ary search example with four threads, 212
serial version of N-ary search algorithm, 213

binary tree, complete, 266
body class (TBB), 86
boss/worker algorithm, 18

task scheduling, 31
bottom-up threading, 75
breadth-first search, 238
Breshears’s Fundamental Law of Sorting, 174
Bubblesort algorithm, 146–153

serial version, 146
threaded version, 149

design factor scorecard, 152
interleaving cases, 150

bus overload, 265

C
C language, ix
cache

levels of, hierarchies added to memory, 12
cache prefetching, 265
call graph analysis, 261
chunks, 265
circular wait condition of deadlock, 59
clusters of PCs, used to create distributed-memory

parallel platform, 15
coarse-grained, 25
compiler pragma, 266
compilers, support of OpenMP, 82
complete binary tree, 266
concurrency

defined, 3, 266
identifying code parts for threading, 9

concurrent programming, viii

277

approach of this book, 19
code that can’t be parallel, 43
design factor scorecard, 41
domain-specific libraries, 93
level of difficulty, 4
primer on, 6
task decomposition design model, 22

concurrent_queue container (TBB), 176, 179
condition variables (Pthreads), 89
conditional expression evaluation, locking, 231
CONDITION_VARIABLE objects, 136
connected components, 244, 266
connected graphs, 224, 266

spanning tree, 245
consumer threads, 19
containers (TBB), 87
CountAndMark class (example), 118
critical path, 261
critical path analysis, 262
critical regions, 53

defined, 266
size of, locks and, 230

critical section problem (example), 53
algorithm to enforce mutual exclusion,

Dekker’s Algorithm, 62
algorithm to enforce mutual exclusion, first

attempt, 54
algorithm to enforce mutual exclusion, fourth

attempt, 60
algorithm to enforce mutual exclusion, second

attempt, 55
algorithm to enforce mutual exclusion, third

attempt, 57
critical sections, 266
CRITICAL_SECTION objects, 91, 150

D
data decomposition, 22, 32

defined, 266
Game of Life example, 39
key design considerations, 34
updates of elements in a chunk, 36

data dependency, 27
data flow parallelism, 266
data races, 7

benign, 156, 265
detecting and fixing, 10

dbx debugger, 258
deadlocks

defined, 266
livelock versus, 148
necessary conditions for, 59

debuggers, 258
thread issue, Thread Checker debugger, 259
thread-aware, 258

declarations, local, and thread-local storage, 17
Dekker’s Algorithm, 53

using to solve critical section problem, 62–65
dependencies, 23

code without, 28
data decomposition, Game of Life example, 41
data dependency, 27
defined, 267
loop-carried dependence, 46
order dependency, 27
removable, 44, 271
separable, 45, 272

depth-first search, 224–238
concurrent implementation, 232

interleaving analysis, 235
spawning depth-first search threads, 235

design factor scorecard for concurrent version,
236

example, 225
iterative version, 228
recursive serial implementation, 226
transforming iterative version into concurrent

version, 229
locking conditional expression evaluation,

231
number of locks, 229

design factor scorecard
Bubblesort algorithm, 152
for concurrent N-ary search algorithm, 218
concurrent minimum spanning tree algorithms,

254
for depth-first search concurrent version, 236
for Floyd’s Algorithm concurrent version, 243
for linear search algorithm, 208
odd-even transposition sort, concurrent

versions, 161
parallel sum algorithm, 101
prefix scan, 110
Quicksort algorithm, final concurrent version,

180
for radix sorts, 197
reduce operation code, 136
Shellsort algorithms, 167

design rules for multithreaded applications (see
multithreaded applications, design rules)

deterministic, 267
Dijkstra’s Algorithm, 245
directed graphs, 222, 267
directives (OpenMP), 83
discrete optimization problems, 224
distributed radix sort algorithm, 190
distributed-memory model, 267
distributed-memory programming, 14

features in common with shared-memory
programming, 16

278 I N D E X

distributed-memory version, odd-even
transposition sort, 162

distributed-memory version, Shellsort algorithm,
169

double-phase, concurrent implementation, odd-
even transposition sort, 160

design factor scorecard, 161
dynamic allocation, 16, 267
dynamic graphs, 240
dynamic scheduling of tasks, 29

E
edge weight, 267
edges, graph, 222, 267
efficiency, 70, 267

prefix scan algorithm, 110
efficiency (speedup), 71, 267
enchantingly parallel, 28, 267
environment variables (OpenMP), 86
errors

in concurrent programming, 5
detecting and fixing threading errors, 10

events (Windows), 92
exchange of data, 35
exclusive prefix scan, 103, 267
execution

order of threads, 77
out-of-order, 270

execution stream, 268
explicit threading libraries, 89–92

Pthreads, 89
Windows Threads, 91

F
fairness property, 52
false sharing, 18, 268
fetch_and_add() operation (TBB), 181
FindMedians class (example), 117
fine-grained, 25
floating-point division, 134
Floyd’s Algorithm, 240–244

concurrent implementation using TBB, 241
data race in, 242
design factor scorecard for concurrent version,

243
serial implementation, 241

fork-join parallelism, 268
friendly numbers, 138

solution to finding, 139–142

G
game trees, 224, 268

search algorithms for, 240
GCD (greatest common divisor), calculating, 140

gdb debugger, 258
geometric decomposition, 33
ghost cells, 268
gprof profiling tool, 260
granularity, 25

considering in data decomposition, 35
defined, 268

graph algorithms, 222–256
all-pairs shortest path, 240–245
breadth-first search, 238
depth-first search, 224–238
minimum spanning tree, 245–256

graphs
defined, 268
map as instance, 240
static versus dynamic, 240

gray code, 268
greatest common divisor (GCD), calculating, 140
Gustafson-Barsis’s Law, 70, 268

H
handle of a thread

HANDLE objects in Windows Threads, 91
Pthreads, 89

hardware support for parallelism, evolution of, 71
Heisenberg Uncertainty Principle, 5, 268
helper functions

concurrent linear search, 206
concurrent version of Prim’s Algorithm, 252
defined, 268

hold and wait condition of deadlock, 59
hotspots

defined, 9
finding via profiling, 260
placing concurrency at highest level around,

75
recurrences and, 44

Hyper-Threading (HT) technology, 71

I
idb debugger, 259
implicit threading libraries, 82–88

Intel Threading Building Blocks (TBB), 86
OpenMP, 82

inclusive prefix scan, 103, 269
indefinite postponement, 64
induction variables, concurrent execution and, 44
insertion sort algorithm, 163
Intel, 87

(see also TBB)
Hyper-Threading (HT) technology, 71
idb debugger, 259
Integrated Performance Primitives (IPP), 93
Math Kernel Library (MKL), 93

I N D E X 279

Parallel Studio components, 263
Thread Checker debugger, 259
Thread Profiler, 262
Threading Building Blocks (TBB), 29, 86, 269
threading methodology, 8
VTune Performance Analyzer, 261

intercepted wait, 134
interleavings of atomic statements from threads,

51
Bubblesort algorithm, 150
concurrent depth-first search, 235
Floyd’s Algorithm, 242

InterlockedCompareExchange() function, 233,
237

InterlockedIncrement() function, 180
IPP (Integrated Performance Primitives) library,

93
iterative searches

binary search algorithm, 211
depth-first search algorithm, 228

iterative sorts
Quicksort algorithm, 172–179
radix exchange sort, 183

K
Kruskal’s Algorithm, 246

L
LAPACK library, 93
LEG class (example), 118
length of a path, 224
lifecycle of software, 8

analysis step, 9
linear search algorithm

concurrent version, code to create threads and
examine search results, 207

concurrent version, global declarations, 205
concurrent version, linear search and helper

functions, 206
design factor scorecard for concurrent version,

208
OpenMP version, 203

linear search code for unsorted data, 203
linear speedup, 269
Linux

profiling tool, gprof, 260
thread-aware debuggers, 258

list structures, data decomposition and, 33
lists, selection of element from, 112–123
livelock, 148

defined, 269
load balance, 269
load balancing

data decomposition and, 33

issues in map computations, 129
local variables, 269
locks

association to specific data, 78
determining number in concurrent depth-first

search, 229
locking conditional expression evaluation, 231
Windows Threads, concurrent depth-first

search, 233
loop-carried dependence, concurrent execution

and, 46
loops

parallelization of iterations with TBB, 86
static scheduling of iterations, 134
worksharing construct in OpenMP, 83

concurrent N-ary search algorithm, 217
exit points and, 204
using in MapReduce solution, 141

M
map operation, 126
MapReduce framework, 126–143

applying, 138–142
solution to finding friendly numbers, 139–

142
as generic concurrency, 143
map as concurrent operation, 127
pseudocode example, 126
reduce as concurrent operation, 129

maps, as instances of a graph, 240
Math Kernel Library (MKL), 93
matrix multiplication algorithm, 244
median of a data set, 112

finding medians of subsequences, 117
memory

access patterns, PRAM variations based on, 13
communication in, 18
distributed-memory configurations, 14
effects of sharing, 17
shared-memory parallel computers, 14
thread access to, 13

message-passing, 269
minimum element, index of, 251
minimum spanning tree algorithms, 245–256

design factor scorecard for concurrent versions,
254

Kruskal’s Algorithm, 246
Prim’s Algorithm, 247

concurrent version, 251
serial implementation, 249

MKL (Math Kernel Library), 93
modulo locks, 230

defined, 269
protecting read and write of variable in

conditional expression, 232

280 I N D E X

monotonically decreasing amounts of work among
threads, 141

multicore processors, viii
increasing numbers of cores, 75
processor and platform innovations leading to,

71
multithreaded applications, design rules, 74

changing algorithm for better concurrency, 79
identifying independent computations, 74
implementing concurrency at highest level

possible, 74
not assuming particular order of execution, 77
planning scalability for increasing numbers of

cores, 75
using right threading model, 77
using thread-local storage and locks, 78
using thread-safe libraries, 76

multithreaded programming, 2
(see also concurrent programming)

mutex objects
defined, 269
Pthread, 89
TBB, 87
Windows Threads, 91

mutual exclusion, 18, 269
mutual exclusion condition of deadlock, 59

N
no preemption condition of deadlock, 59
nodes, graph, 222

paths, 224
tree graphs, 245
visiting in depth-first search, 226
weight of, 223

nondeterministic, 77, 270
numbers, friendly (see friendly numbers)
numerical integration code example, 31

O
odd-even transposition sort, 153–162

concurrent code for, 155
concurrent double-phase implementation, 160
concurrent version, pushing concurrency

higher, 156
concurrent version, while loop changes, 157
design factor scorecard for concurrent versions,

161
serial code for, 154

OpenMP, 77
barrier construct, 192
barriers, 137
code example, computing pi with numerical

integration, 85
concurrent N-ary search algorithm, 216

concurrent straight radix sorts and, 199
defined, 270
definition and description of, 82
linear search algorithm, 203
loop worksharing construct in concurrent

minimum spanning tree, 253
MapReduce solution for finding friendly

numbers, 139–142
odd-even transposition sort, concurrent

version, 155
pushing concurrency higher, 156

Prim’s Algorithm concurrent implementation
and, 251

private clause, 28
Quicksort algorithm implementation, 181
reduction clause, using in parallel sum, 99
Shellsort algorithm, concurrent version, 166
specification document, 86
task concurrency in version 3.0, 85
teams of threads, 174

order dependency, 27
order of execution, not assuming particular order,

77
out-of-order execution, 270
overhead

of concurrent execution, 7
defined, 270
inherent in concurrent algorithms, 69

P
PackingMove class (example), 122
PackingScan class (example), 121
parallel, 3, 270
parallel algorithms, 12

generic, in TBB library, 86
verifying, 50–66

steps in, 52
parallel construct (OpenMP), 83
Parallel Random Access Machine (see PRAM)
parallel region, 270
Parallel Studio tool, 262
parallel sum, 96, 270
parallel sum algorithms, 96–103

CountAndMark class (example), 119
design factor scorecard, 101
PRAM algorithm, 97
using OpenMP reduction clause, 99
using POSIX threads and global partial sum

storage, 100
parallelism

concurrency versus, 3
shared-memory and distributed-memory, 15

parallelization, 3
ParallelSelect() function (example), 116
parallel_for algorithm (TBB), 86, 117

I N D E X 281

parallel_reduce algorithm (TBB), 86, 251
parallel_scan algorithm (TBB), 104

using in parallel select algorithm, 116
partitioner class (TBB), 86
partitioning, in Quicksort algorithm, 170
partitions

counting and marking elements for, 118
radix exchange sort, 183, 184

path length, 270
paths (in graphs), 224, 270
Patterns for Parallel Programming, 22
perfect speedup, 270
performance metrics, 66

efficiency, 70
speedup, 67–70
using multiple threads per core, 71

performance tools, 260
profiling, 260

performance tuning, 11
PLAPACK library, 93
POSIX threads, 89

(see also Pthreads)
defined, 270
thread-local storage (TLS) API, 17

pragmas (OpenMP), 83
PRAM (Parallel Random Access Machine), 13,

270
variations based on memory access patterns,

13
PRAM algorithms

adaptation of, 124
for parallel sum, 97
for prefix scan, 104

prefix scan, 103–111
array packing with, 120
defined, 270
design factor scorecard, 110
exclusive, 267
exclusive prefix scan in serial, 110
gathering keys in straight radix sort, 188
inclusive, 269
inclusive and exclusive, 103
PRAM algorithm for (code example), 106
PRAM computation for, 104
serial computation of integer array, 103
using for count variables in straight radix sort,

192
using Windows Threads, 107

Prim’s Algorithm, 247
concurrent version, 251
concurrent version and helper function, 252
serial implementation, 249

processors, specifying number used by PRAM
algorithm, 14

producer/consumer algorithm, 19, 31

profiling tools, 260
thread profiling with Thread Profiler, 261

Pthreads, 89
barrier object implementation for, 134–136
code example, computing pi with numerical

integration, 90
implementing concurrent version of Quicksort,

181
straight radix sort, improved version, 195
using in parallel sum, 100

pthread_mutex_t objects, 181
push() and pop() functions

iterative depth-first search, 229

Q
queues

in concurrent breadth-first search, 239
defined for iterative Quicksort, 173
Quicksort algorithm, blocking on empty queue,

176
using semaphores to track remaining items,

177
Quicksort algorithm, 169–182

concurrency within iterative version, 172–179
concurrency within recursion, 171
defined, 271
depth-first search versus, 229
design factor scorecard for final concurrent

version, 180
final threaded version of QuickSort() function,

179
partitioning in, 170
serial version, 170
threaded QuickSort(), code fragment calling,

180

R
race conditions, 271
radix sorts, 182–199

design factor scorecard, 197
radix exchange sort, 183

serial version, 183
straight radix sort, 185

concurrent algorithm, 194
concurrent solution, using Pthreads, 195
gathering keys with prefix scan, 188
keeping data movement stable, 189
reducing number of data touches, 193
second serial version, 190
serial version, 186

RAM (Random Access Machine) model, 12
range class (TBB), 86
readers/writer locks, 19

defined, 271

282 I N D E X

depth-first search, concurrent version, 229
recurrences

concurrent execution and, 44
in loop-carried dependence, 46

recursion
depth-first search algorithm, serial

implementation, 226
in Quicksort algorithm, 171

reduce operation, 126
as concurrent operation, 129
code to sum elements of an array, 130
considerations during map operation design,

128
design factor scorecard for code, 136

reduction, 99, 126
concurrent execution and, 45

reduction clause (OpenMP), 99, 251
redundant work, 16
root node, 245
Rubik’s Cube configuration, as search graph, 238

S
scalability

of concurrent applications, 42
defined, 271
planning for increasing numbers of cores, 75
prefix scan algorithm, 111

scalable algorithms, 4
ScaLAPACK library, 93
scaled speedup, 70
schedule clause (OpenMP), 141, 161
scientific and technical libraries for parallel

computation, 93
searching, 202–220

binary search, 211–220
unsorted data, 202–210

curtailing the search, 205–208
selection, 112

concurrent algorithm for, 116
ArrayPack() function (example), 119
CountAndMark and LEG classes (example),

118
design notes, 123
FindMedians class (example), 117
PackingMove class (example), 122
PackingScan class (example), 121
ParallelSelect code (example), 116

serial algorithm for, 112
serial code implementing selection algorithm,

113
support functions for serial algorithm, 114

semaphores
defined, 272
using in concurrent depth-first search, 234
using in thread termination, 178

using to track items in queue, 177
sequential consistency, 23, 272
serial code, 5

transformed to concurrent, implementation
step, 12

shared memory, 272
shared-memory programming

features in common with distributed-memory
programming, 16

features unique to, 17
sharing data, 16
Shellsort algorithm, 163–169

concurrent version, using OpenMP, 166
design factor scorecard, 167
modified serial Shellsort to sort entire h-

partition, 166
review of insertion sort, 163
serial version, 164

SIMD (Single Instruction, Multiple Data stream),
272

simple paths, 224, 272
single construct, 157
single pragma (OpenMP), 251
SMP (symmetric multiprocessing), 72
software lifecycle (see lifecycle of software)
sorting, 114, 146–199

Bubblesort algorithm, 146–153
odd-even transposition sort, 153–162
Quicksort algorithm, 169–182
radix sorts, 182–199
Shellsort algorithm, 163–169

sorting algorithms, stable, 185
spanning tree, 245
speedup, 67, 267

defined, 272
efficiency and, 71
estimating using Amdahl’s Law, 68
example speedup curves, 67
Gustafson-Barsis’s Law for, 70
linear, 269
perfect, 270
superlinear, 68, 272

stable sorting algorithms, 185
starvation, 61, 272
state, algorithms with, 43
states in discrete optimization problems, 224
static allocation, 16, 272
static graphs, 240
static scheduling of tasks, 29
storage conflicts, 7, 259, 272
straight radix sort, 185

code execution, 187
concurrent algorithm, 194
concurrent version, using Pthreads, 195
keeping data movement stable, 189

I N D E X 283

reducing number of data touches, 193
second serial version, 190
serial version, 186
using decimal digits, 186
using prefix scan to gather keys, 188

Strassen’s Algorithm, 79
Streaming SIMD Execution (SSE), 72, 272
SumByReduction() function (example), 132
superlinear speedup, 68, 272
symmetric multiprocessing (SMP), 72
synchronization

barrier object implementation for Pthreads,
134–136

barrier objects, 132, 265
defined, 272
in OpenMP, 84
semaphores, 272
in Windows Threads, 91

synchronization objects, 273
locks, association to specific data, 78

T
task decomposition, 22, 273
taskq extensions to OpenMP, 181
tasks

assignment to threads, 29
definition and scheduling by TBB library, 86

TBB (Threading Building Blocks), 86
atomic fetch_and_add() operation, 181
class to find index of minimum element via

parallel_reduce, 251
code example, computing pi with numerical

integration, 87
concurrent Floyd’s Algorithm implementation,

241
concurrent N-ary search algorithm

implementation, 219
concurrent straight radix sorts and, 199
concurrent_queue container, 176
defined, 269
using in concurrent algorithm for selection,

116
TBB (Threading Building Blocks) (Intel), 29
TBB (Threading Building Blocks) library

parallel_scan template, 104
teams of threads, 174
testing for correctness, 10

performance tuning changes, 11
Thread Checker debugger, 259
thread monkey, 3, 273
thread pools

defined, 273
finding work for threads, 176
implementation in concurrent solution, 174
letting threads know work is done, 175

terminating threads running QuickSort()
function, 177

terminating threads with TerminateThread(),
180

Thread Profiler, 261
thread-local storage (see TLS)
thread-safe, 273
thread-safe libraries, 76
threaded programming, ix
threading, 74

(see also multithreaded applications, design
rules)
dangers of threads, 5
serial code, approaches to, 74
using right model, 77
verifying parallel algorithms, 50–66

threading libraries, 82–93
domain-specific, 93
explicit threading, 89–92
implicit threading, 82–88
other, 92

threading methodology
analysis, 9
design and implementation, 9
steps within software lifecycle, 8
testing for correctness, 10
tuning for performance, 11

threading tools, 258–263
debuggers, 258
Intel Parallel Studio components, 262
performance tools, 260

threads
assignment of tasks to, 29
defined, 273
depth-first search, spawning in concurrent

version, 235
interleavings of statements from, 51
lockstep execution, 13
in OpenMP, 83
setting number in OpenMP, 86
storage conflict or data race, 7
synchronization of, 7
variable accessible only to given thread, 28

TLS (thread-local storage)
defined, 273
local declarations and, 17
local work variables and, 28
use in multithreaded applications, 78

top-down threading, 75
Totalview debugger, 259
trees, 245
tuning for performance, 11

U
undirected graphs, 273

284 I N D E X

weighted graph and associated weight matrix,
223

unsorted data, searching, 202–210
curtailing the search, 205–208
design factor scorecard for concurrent linear

search, 208
linear search code for, 203
OpenMP version of linear search algorithm,

203
updates, elements within a data chunk, 36

V
variables

accessible only to given thread, 28
condition variables in Pthreads, 89
induction variables and concurrent execution,

44
local, 269
private, 270
private or local, in shared-memory

programming, 17
vertices, 222, 273
visited array, depth-first search, 227, 229
volume-to-surface ratio (in data decomposition),

35
VTune Performance Analyzer, 261

Thread Checker plug-in, 259

W
wait, intercepted, 134
wavefront algorithm, 273
wavefront approach, 148
weight, 223
weighted graphs, 223, 273

minimum spanning tree, 246
while loop, changes in odd-even transposition sort

code, 157
Windows Threads

Bubblesort, threaded version, 149
concurrent implementation of depth-first

search, 233
CONDITION_VARIABLE object, 136
defined, 273
description of contents, 91
Quicksort algorithm, concurrency within

recursion, 171
thread-local storage (TLS) API, 17
using in prefix scan, 107

work
dividing, 16
redundant, 16
static/dynamic allocation of, 16

worker processes, 18
worksharing, 29, 273

I N D E X 285

About the Author
Dr. Clay Breshears has been with Intel Corporation since September 2000. He started as a senior
parallel application engineer at the Intel Parallel Applications Center in Champaign, Illinois,
implementing multithreaded and distributed solutions in customer applications. Clay is
currently a courseware architect, specializing in multicore and multithreaded programming
and training. Before joining Intel, Clay was a research scientist at Rice University helping
Department of Defense researchers make the best use of the latest High Performance
Computing (HPC) platforms and resources. Clay received his Ph.D. in computer science from
the University of Tennessee, Knoxville, in 1996, but he has been involved with parallel
computation and programming for over 20 years; six of those years were spent in academia at
Eastern Washington University and the University of Southern Mississippi.

Colophon
The cover image is an aerial view of wheat-harvesting combines from Getty Images. The cover
fonts are Akzidenz Grotesk and Orator. The text font is Adobe’s Meridien; the heading font is
ITC Bailey.

	Oreilly - The Art of Concurrency (06-2009) (ATTiCA)
	Table of Contents
	Preface
	Why Should You Read This Book?
	Who Is This Book For?
	What’s in This Book?
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Safari® Books Online
	Acknowledgments

	Chapter 1. Want to Go Faster? Raise Your Hands if
 You Want to Go Faster!
	Some Questions You May Have
	What Is a Thread Monkey?
	Parallelism and Concurrency: What’s the Difference?
	Why Do I Need to Know This? What’s in It for Me?
	Isn’t Concurrent Programming Hard?
	Aren’t Threads Dangerous?

	Four Steps of a Threading Methodology
	Step 1. Analysis: Identify Possible Concurrency
	Step 2. Design and Implementation: Threading the Algorithm
	Step 3. Test for Correctness: Detecting and Fixing Threading Errors
	Step 4. Tune for Performance: Removing Performance Bottlenecks
	The testing and tuning cycle

	What About Concurrency from Scratch?

	Background of Parallel Algorithms
	Theoretical Models
	Distributed-Memory Programming
	Parallel Algorithms Literature

	Shared-Memory Programming Versus Distributed-Memory Programming
	Common Features
	Redundant work
	Dividing work
	Sharing data
	Static/dynamic allocation of work

	Features Unique to Shared Memory
	Local declarations and thread-local storage
	Memory effects
	Communication in memory
	Mutual exclusion
	Producer/consumer
	Readers/writer locks

	This Book’s Approach to Concurrent Programming

	Chapter 2. Concurrent or Not Concurrent?
	Design Models for Concurrent Algorithms
	Task Decomposition
	What are the tasks and how are they defined?
	What are the dependencies between tasks and how can they be satisfied?
	How are the tasks assigned to threads?
	Example: numerical integration

	Data Decomposition
	How should you divide the data into chunks?
	How can you ensure that the tasks for each chunk have access to all data required for updates?
	How are the data chunks (and tasks) assigned to threads?
	Example: Game of Life on a finite grid

	Concurrent Design Models Wrap-Up

	What’s Not Parallel
	Algorithms with State
	Recurrences
	Induction Variables
	Reduction
	Loop-Carried Dependence
	Not-so-typical loop-carried dependence

	Chapter 3. Proving Correctness and Measuring
 Performance
	Verification of Parallel Algorithms
	Example: The Critical Section Problem
	First Attempt
	Second Attempt
	Third Attempt
	Fourth Attempt
	Dekker’s Algorithm
	Case 1
	Case 2a: T0 is the favored thread
	Case 2b: T1 is the favored thread
	Case 3
	What about indefinite postponement?

	What Did You Learn?
	There Are No Evil Threads, Just Threads Programmed for Evil

	Performance Metrics (How Am I Doing?)
	Speedup
	Amdahl’s Law
	Gustafson-Barsis’s Law

	Efficiency
	One Final Note on Speedup and Efficiency

	Review of the Evolution for Supporting Parallelism in Hardware

	Chapter 4. Eight Simple Rules for Designing Multithreaded Applications
	Rule 1: Identify Truly Independent Computations
	Rule 2: Implement Concurrency at the Highest Level Possible
	Rule 3: Plan Early for Scalability to Take Advantage of Increasing Numbers of Cores
	Rule 4: Make Use of Thread-Safe Libraries Wherever Possible
	Rule 5: Use the Right Threading Model
	Rule 6: Never Assume a Particular Order of Execution
	Rule 7: Use Thread-Local Storage Whenever Possible or Associate Locks to Specific Data
	Rule 8: Dare to Change the Algorithm for a Better Chance of Concurrency
	Summary

	Chapter 5. Threading Libraries
	Implicit Threading
	OpenMP
	Intel Threading Building Blocks

	Explicit Threading
	Pthreads
	Windows Threads

	What Else Is Out There?
	Domain-Specific Libraries

	Chapter 6. Parallel Sum and Prefix Scan
	Parallel Sum
	PRAM Algorithm
	A dash of reality

	A More Practical Algorithm
	Design Factor Scorecard
	Efficiency
	Simplicity
	Portability
	Scalability

	Prefix Scan
	PRAM Algorithm
	A less heavy dash of reality

	A More Practical Algorithm
	What the main thread does
	What the spawned threads are doing

	Design Factor Scorecard
	Efficiency
	Simplicity
	Portability
	Scalability

	Selection
	The Serial Algorithm
	The Concurrent Algorithm
	Finding the medians of subsequences
	Counting and marking elements for partitions
	The ArrayPack() function

	Some Design Notes

	A Final Thought

	Chapter 7. MapReduce
	Map As a Concurrent Operation
	Implementing a Concurrent Map

	Reduce As a Concurrent Operation
	Handcoded Reduction
	A Barrier Object Implementation
	Design Factor Scorecard
	Efficiency
	Simplicity
	Portability
	Scalability

	Applying MapReduce
	Friendly Numbers Example Summary

	MapReduce As Generic Concurrency

	Chapter 8. Sorting
	Bubblesort
	Will It Work?
	Design Factor Scorecard
	Efficiency
	Simplicity
	Portability
	Scalability

	Odd-Even Transposition Sort
	A Concurrent Code for Odd-Even Transposition Sort
	Trying to Push the Concurrency Higher
	Keeping threads awake longer without caffeine

	Design Factor Scorecard
	Efficiency
	Simplicity
	Portability
	Scalability

	Shellsort
	Quick Review of Insertion Sort
	Serial Shellsort
	Concurrent Shellsort
	Design Factor Scorecard
	Efficiency
	Simplicity
	Portability
	Scalability

	Quicksort
	Concurrency Within Recursion
	Concurrency Within an Iterative Version
	Iterative Quicksort
	Concurrent iterative version

	Final Threaded Version
	Design Factor Scorecard
	Efficiency
	Simplicity
	Portability
	Scalability

	Radix Sort
	Radix Exchange Sort
	Straight Radix Sort
	Using prefix scan to gather keys
	Keeping data movement stable
	Reducing the number of data touches

	The Concurrent Straight Radix Sort Solution
	Design Factor Scorecard
	Efficiency
	Simplicity
	Portability
	Scalability

	Chapter 9. Searching
	Unsorted Sequence
	Curtailing the Search
	Design Factor Scorecard
	Efficiency
	Simplicity
	Portability
	Scalability

	Binary Search
	But First, a Serial Version
	At Last, the Concurrent Solution
	Design Factor Scorecard
	Efficiency
	Simplicity
	Portability
	Scalability

	Chapter 10. Graph Algorithms
	Depth-First Search
	A Recursive Solution
	An Iterative Solution
	Not the Concurrent Solution, Yet
	How many locks do we need?
	Locking a conditional expression evaluation

	Now for the Concurrent Solution
	A little interleaving analysis
	Spawning the depth-first search threads

	Design Factor Scorecard
	Efficiency
	Simplicity
	Portability
	Scalability

	Breadth-First Search
	It’s all in the queue

	Static Graphs Versus Dynamic Graphs

	All-Pairs Shortest Path
	What About the Data Race on the kth Row?
	Design Factor Scorecard
	Efficiency
	Simplicity
	Portability
	Scalability

	Alternatives to Floyd’s Algorithm

	Minimum Spanning Tree
	Kruskal’s Algorithm
	Prim’s Algorithm
	Which Serial Algorithm Should We Start With?
	Concurrent Version of Prim’s Algorithm
	Design Factor Scorecard
	Efficiency
	Simplicity
	Portability
	Scalability

	Chapter 11. Threading Tools
	Debuggers
	Thread-Aware Debugger
	Thread Issue Debugger: Thread Checker

	Performance Tools
	Profiling
	Thread Profiling: Standard Profile Tool (Sample Over Time), Thread Profiler

	Anything Else Out There?
	Go Forth and Conquer

	Glossary
	Photo Credits
	Index

